skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrochemically Stable Carbazole-Derived Polyaniline for Pseudocapacitors
Supercapacitor energy storage devices are well suited to meet the rigorous demands of future portable consumer electronics (PCEs) due to their high energy and power densities (i.e., longer battery-life and rapid charging, respectively) and superior operational lifetimes (10 times greater than lithium-ion batteries). To date, research efforts have been narrowly focused on improving the specific capacitance of these materials; however, emerging technologies are increasingly demanding competitive performance with regards to other criteria, including scalability of fabrication and electrochemical stability. In this regard, we developed a polyaniline (PANI) derivative that contains a carbazole unit copolymerized with 2,5-dimethyl-p-phenylenediamine (Cbz-PANI-1) and determined its optoelectronic properties, electrical conductivity, processability, and electrochemical stability. Importantly, the polymer exhibits good solubility in various solvents, which enables the use of scalable spray-coating and drop-casting methods to fabricate electrodes. Cbz-PANI-1 was used to fabricate electrodes for supercapacitor devices that exhibits a maximum areal capacitance of 64.8 mF cm–2 and specific capacitance of 319 F g–1 at a current density of 0.2 mA cm–2. Moreover, the electrode demonstrates excellent cyclic stability (≈ 83% of capacitance retention) over 1000 CV cycles. Additionally, we demonstrate the charge storage performance of Cbz-PANI-1 in a symmetrical supercapacitor device, which also exhibits excellent cyclic stability (≈ 91% of capacitance retention) over 1000 charge–discharge cycles.  more » « less
Award ID(s):
1945503
PAR ID:
10319702
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACS Applied Polymer Materials
ISSN:
2637-6105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supercapacitors and batteries are essential for sustainable energy development. However, the bottleneck is the associated high cost, which limits bulk use of batteries and supercapacitors. In this context, realizing that the cost of energy‐storage device mainly depends on materials, synthesis processes/procedures, and device fabrication, an effort is made to rationally design and develop novel low‐cost electrode materials with enhanced electrochemical performance in asymmetric supercapacitors. Herein, surface functionalization approach is adopted to design low‐cost 3D mesoporous and nanostructured nickel–nickel oxide electrode materials using facile synthesis for application in supercapacitors. It is demonstrated that the 3D mesoporous Ni provides the high surface area and enhanced ionic conductivity, while germanium functionalization improves the electrical conductivity and reduces the charge‐transfer resistance of NiO. Surface functionalization with Ge demonstrates the significant improvement in specific capacitance of NiO. The asymmetric supercapacitor using these Ge‐functionalized NiO–Ni electrodes provides a specific capacitance of 304 Fg−1(94 mF cm−2), energy density of 23.8 Wh kg−1(7.35 μWh cm−2), and power density of 6.8 kW kg−1(2.1 mW cm−2) with excellent cyclic stability of 92% after 10 000 cycles. To validate their practical applications, powering the digital watch using the asymmetric supercapacitors in laboratory conditions is demonstrated. 
    more » « less
  2. Abstract Electrocatalytically active titanium oxynitride (TiNO) thin films were fabricated on commercially available titanium metal plates using a pulsed laser deposition method for energy storage applications. The elemental composition and nature of bonding were analyzed using X-ray photoelectron spectroscopy (XPS) to reveal the reacting species and active sites responsible for the enhanced electrochemical performance of the TiNO electrodes. Symmetric supercapacitor devices were fabricated using two TiNO working electrodes separated by an ion-transporting layer to analyze their real-time performance. The galvanostatic charge–discharge studies on the symmetric cell have indicated that TiNO films deposited on the polycrystalline titanium plates at lower temperatures are superior to TiNO films deposited at higher temperatures in terms of storage characteristics. For example, TiNO films deposited at 300 °C exhibited the highest specific capacity of 69 mF/cm2 at 0.125 mA/cm2 with an energy density of 7.5 Wh/cm2. The performance of this supercapacitor (300 °C TiNO) device is also found to be ∼22% better compared to that of a 500 °C TiNO supercapacitor with a capacitance retention ability of 90% after 1000 cycles. The difference in the electrochemical storage and capacitance properties is attributed to the reduced leaching away of oxygen from the TiNO films by the Ti plate at lower deposition temperatures, leading to higher oxygen content in the TiNO films and, consequently, a high redox activity at the electrode/electrolyte interface. 
    more » « less
  3. Micro-supercapacitor is a member of the miniaturized energy storage device family, which offers great advantages on power density and life span. However, the limited device capacitance and narrow voltage window limit its energy density, hindering its application. In the present work, a novel micro-pseudocapacitor (MPC) constructed via the facile extrusion-based 3D printing technique has been demonstrated to deliver efficient charge storage with high device capacitance and moderate voltage window. Such an asymmetric MPC is constructed with 3D-printing-enabled asymmetric interdigitated cellular microelectrodes; in which, one is Ni–Co–O nanosheets grown on macroporous 3D reduced GO (3DG) microelectrode and the other is MnO 2 nanosheets grown on 3DG. Such an MPC offers facilitated fast electron transport, ionic diffusion, large number of active sites and desired porosity for electrolyte penetration. The asymmetric MPC shows a high specific capacity of 500 mC cm −2 , an energy density of 90 μW h cm −2 and a voltage window of 1.3 V. A device cycling stability with 10 000 charge and discharge cycles is also achieved for the as-fabricated asymmetric MPCs. These encouraging results may open a new avenue to design and fabricate state-of-the-art miniaturized electrochemical energy storage devices with customized geometries. 
    more » « less
  4. Abstract Extensive research into green technologies is driven by the worldwide push for eco‐friendly materials and energy solutions. The focus is on synergies that prioritize sustainability and environmental benefits. This study explores the potential of abundant, non‐toxic, and sustainable resources such as paper, lignin‐enriched paper, and cork for producing laser‐induced graphene (LIG) supercapacitor electrodes with improved capacitance. A single‐step methodology using a CO2laser system is developed for fabricating these electrodes under ambient conditions, providing an environmentally friendly alternative to conventional carbon sources. The resulting green micro‐supercapacitors (MSCs) achieve impressive areal capacitance (≈7–10 mF cm−2) and power and energy densities (≈4 μW cm‐2and ≈0.77 µWh cm−2at 0.01 mA cm−2). Stability tests conducted over 5000 charge–discharge cycles demonstrate a capacitance retention of ≈80–85%, highlighting the device durability. These LIG‐based devices offer versatility, allowing voltage output adjustment through stacked and sandwich MSCs configurations (parallel or series), suitable for various large‐scale applications. This study demonstrates that it is possible to create high‐quality energy storage devices based on biodegradable materials. This development can lead to progress in renewable energy and off‐grid technology, as well as a reduction in electronic waste. 
    more » « less
  5. The ever-growing demand for portable, bendable, twistable, and wearable microelectronics operating in a wide temperature range has stimulated an immense interest in the development of solid-state flexible energy storage devices using scalable fabrication technology. Herein, we developed additively manufactured graphene aerosol gel-based all-solid-state micro-supercapacitors (MSCs) via inkjet printing with functioning temperature in the range from −15 to +70 °C and exhibiting a super-stable and reliable electrochemical performance using interdigitated finger electrodes and PVA/H3PO4 solid-state electrolyte. The graphene aerosol gel was obtained using a scalable single step synthesis method from a gas phase precursor using a detonation process, producing a nanoscale shell type structure. The fabricated graphene aerosol gel-based solid-state MSC achieved a volumetric capacitance of 376.63 mF cm−3 (areal capacitance of 76.23 μF cm−2) at a constant current of 0.25 μA and demonstrated exceptional cyclic stability (∼99.6% of capacitance retention) over 10 000 cycles. To exploit the mechanical strength of the as-fabricated graphene aerosol gel-based solid-state MSC, its supercapacitive performance was scrutinized under various bending and twisting angles and the results showed excellent mechanical flexibility. Furthermore, to study the electrochemical performance of the as-fabricated graphene aerosol gel solid-state MSC in stringent surroundings, a broad temperature dependent supercapacitive analysis was performed as stated above. The electrochemical results of the as-fabricated graphene aerosol gel based all-solid-state MSC exhibit a highly potential route to develop scalable and authentic future miniaturized energy storage devices for IoT based smart electronic appliances. 
    more » « less