Abstract The high-pressure melting curve of FeO controls key aspects of Earth’s deep interior and the evolution of rocky planets more broadly. However, existing melting studies on wüstite were conducted across a limited pressure range and exhibit substantial disagreement. Here we use an in-situ dual-technique approach that combines a suite of >1000 x-ray diffraction and synchrotron Mössbauer measurements to report the melting curve for Fe1-xO wüstite to pressures of Earth’s lowermost mantle. We further observe features in the data suggesting an order-disorder transition in the iron defect structure several hundred kelvin below melting. This solid-solid transition, suggested by decades of ambient pressure research, is detected across the full pressure range of the study (30 to 140 GPa). At 136 GPa, our results constrain a relatively high melting temperature of 4140 ± 110 K, which falls above recent temperature estimates for Earth’s present-day core-mantle boundary and supports the viability of solid FeO-rich structures at the roots of mantle plumes. The coincidence of the defect order-disorder transition with pressure-temperature conditions of Earth’s mantle base raises broad questions about its possible influence on key physical properties of the region, including rheology and conductivity.
more »
« less
Measuring the melting curve of iron at super-Earth core conditions
The discovery of more than 4500 extrasolar planets has created a need for modeling their interior structure and dynamics. Given the prominence of iron in planetary interiors, we require accurate and precise physical properties at extreme pressure and temperature. A first-order property of iron is its melting point, which is still debated for the conditions of Earth’s interior. We used high-energy lasers at the National Ignition Facility and in situ x-ray diffraction to determine the melting point of iron up to 1000 gigapascals, three times the pressure of Earth’s inner core. We used this melting curve to determine the length of dynamo action during core solidification to the hexagonal close-packed (hcp) structure. We find that terrestrial exoplanets with four to six times Earth’s mass have the longest dynamos, which provide important shielding against cosmic radiation.
more »
« less
- PAR ID:
- 10319932
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Science
- Volume:
- 375
- Issue:
- 6577
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is believed that the core formation processes sequestered a large majority of Earth’s carbon into its metallic core. Incorporation of carbon to liquid iron may significantly influence its properties under physicochemical conditions pertinent to the deep magma ocean and thus the chemical evolution of terrestrial planets and moons. Compared to available experimental data on the physical properties of crystalline iron alloys under pressure, there is a remarkable lack of data on the properties of liquid iron‐rich alloys, due to experimental challenges. Here we review experimental and computational results on the structure and properties of iron or iron‐nickel liquids alloyed with carbon upon compression. These laboratory data provide an important foundation on which the interpretation of ultrahigh pressure laboratory data and the verification of theoretical data will have to be based. The low‐pressure data can be used to validate results from theoretical calculations at the same conditions, and high‐pressure calculations can be used to estimate and predict liquid properties under core conditions. Availability of the liquid properties of Fe‐C liquids will provide essential data for stringent tests of carbon‐rich core composition models for the outer core.more » « less
-
Seismic observations suggest that the uppermost region of Earth’s liquid outer core is buoyant, with slower velocities than the bulk outer core. One possible mechanism for the formation of a stably stratified layer is immiscibility in molten iron alloy systems, which has yet to be demonstrated at core pressures. We find immisci- bility between liquid Fe-Si and Fe-Si-O persisting to at least 140 GPa through a combination of laser-heated diamond-anvil cell experiments and first-principles molecular dynamics simulations. High-pressure immiscibility in the Fe-Si-O system may explain a stratified layer atop the outer core, complicate differentiation and evolution of the deep Earth, and affect the structure and intensity of Earth’s magnetic field. Our results support silicon and oxy- gen as coexisting light elements in the core and suggest that SiO2 does not crystallize out of molten Fe-Si-O at the core-mantle boundary.more » « less
-
Light element alloying in iron is required to explain density deficit and seismic wave velocities in Earth’s core. However, the light element composition of the Earth’s core seems hard to constrain as nearly all light element alloying would reduce the density and sound velocity (elastic moduli). The alloying light elements include oxidizing elements like oxygen and sulfur and reducing elements like hydrogen and carbon, yet their chemical effects in the alloy system are less discussed. Moreover, Fe-X-ray Absorption Near Edge Structure (Fe-XANES) fingerprints have been studied for silicate materials with ferrous and ferric ions, while not many X-ray absorption spectroscopy (XAS) studies have focused on iron alloys, especially at high pressures. To investigate the bonding nature of iron alloys in planetary interiors, we presented X-ray absorption spectroscopy of iron–nitrogen and iron–carbon alloys at high pressures up to 50 GPa. Together with existing literature on iron–carbon, –hydrogen alloys, we analyzed their edge positions and found no significant difference in the degree of oxidation among these alloys. Pressure effects on edge positions were also found negligible. Our theoretical simulation of the valence state of iron, alloyed with S, C, O, N, and P also showed nearly unchanged behavior under pressures up to 300 GPa. This finding indicates that the high pressure bonding of iron alloyed with light elements closely resembles bonding at the ambient conditions. We suggest that the chemical properties of light elements constrain which ones can coexist within iron alloys.more » « less
-
Abstract There has been a long debate on the stable phase of iron under the Earth’s inner core conditions. Because of the solid‐liquid coexistence at the inner core boundary, the thermodynamic stability of solid phases directly relates to their melting temperatures, which remains considerable uncertainty. In the present study, we utilized a semi‐empirical potential fitted to high‐temperatureab initiodata to perform a thermodynamic integration from classical systems described by this potential toab initiosystems. This method provides a smooth path for thermodynamic integration and significantly reduces the uncertainty caused by the finite‐size effect. Our results suggest the hcp phase is the stable phase of pure iron under the inner core conditions, while the free energy difference between the hcp and bcc phases is tiny, on the order of 10 s meV/atom near the melting temperature.more » « less