skip to main content


Title: Fine-grained data reveal segregated mobility networks and opportunities for local containment of COVID-19
Abstract Deriving effective mobility control measures is critical for the control of COVID-19 spreading. In response to the COVID-19 pandemic, many countries and regions implemented travel restrictions and quarantines to reduce human mobility and thus reduce virus transmission. But since human mobility decreased heterogeneously, we lack empirical evidence of the extent to which the reductions in mobility alter the way people from different regions of cities are connected, and what containment policies could complement mobility reductions to conquer the pandemic. Here, we examined individual movements in 21 of the most affected counties in the United States, showing that mobility reduction leads to a segregated place network and alters its relationship with pandemic spread. Our findings suggest localized area-specific policies, such as geo-fencing, as viable alternatives to city-wide lockdown for conquering the pandemic after mobility was reduced.  more » « less
Award ID(s):
2026814
NSF-PAR ID:
10319982
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Christofferson, Rebecca C. (Ed.)
    Background The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home. Methodology & principal findings We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control. Conclusions & significance Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another. 
    more » « less
  2. null (Ed.)
    The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality. 
    more » « less
  3. null (Ed.)
    Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning. 
    more » « less
  4. In the past, epidemics such as AIDS, measles, SARS, H1N1 influenza, and tuberculosis caused the death of millions of people around the world. In response, intensive research is evolving to design efficient drugs and vaccines. However, studies warn that new pandemics such as Coronavirus (COVID-19), variants, and even deadly pandemics can emerge in the future. The existing epidemic confinement approaches rely on a large amount of available data to determine policies. Such dependencies could cause an irreversible effect before proper strategies are developed. Furthermore, the existing approaches follow a one-size-fits-all control technique, which might not be effective. To overcome this, in this work, we develop a game-theory-inspired approach that considers societal and economic impacts and formulates epidemic control as a non-zero-sum game. Further, the proposed approach considers the demographic information that provides a tailored solution to each demography. We explore different strategies, including masking, social distancing, contact tracing, quarantining, partial-, and full-lockdowns and their combinations, and present demography-aware optimal solutions to confine a pandemic with minimal history information and optimal impact on the economy. To facilitate scalability, we propose a novel graph learning approach, which learns from the previously obtained COVID-19 game outputs and mobility rates of one state (region) depending on the other to produce an optimal solution. Our optimal solution is strategized to restrict the mobility between states based on the impact they are causing on COVID-19 spread. We aim to control the COVID-19 spread by more than 50% and model a dynamic solution that can be applied to different strains of COVID-19. Real-world demographic conditions specific to each state are created, and an optimal strategic solution is obtained to reduce the infection rate in each state by more than 50%. 
    more » « less
  5. null (Ed.)
    The recent COVID-19 pandemic has prompted global governments to take several measures to limit and contain the spread of the novel virus. In the United States (US), most states have imposed a partial to complete lockdown that has led to decreased traffic volumes and reduced vehicle emissions. In this study, we investigate the impacts of the pandemic-related lockdown on air quality in the US using remote sensing products for nitrogen dioxide tropospheric column (NO2), carbon monoxide atmospheric column (CO), tropospheric ozone column (O3), and aerosol optical depth (AOD). We focus on states with distinctive anomalies and high traffic volume, New York (NY), Illinois (IL), Florida (FL), Texas (TX), and California (CA). We evaluate the effectiveness of reduced traffic volume to improve air quality by comparing the significant reductions during the pandemic to the interannual variability (IAV) of a respective reference period for each pollutant. We also investigate and address the potential factors that might have contributed to changes in air quality during the pandemic. As a result of the lockdown and the significant reduction in traffic volume, there have been reductions in CO and NO2. These reductions were, in many instances, compensated by local emissions and, or affected by meteorological conditions. Ozone was reduced by varying magnitude in all cases related to the decrease or increase of NO2 concentrations, depending on ozone photochemical sensitivity. Regarding the policy impacts of this large-scale experiment, our results indicate that reduction of traffic volume during the pandemic was effective in improving air quality in regions where traffic is the main pollution source, such as in New York City and FL, while was not effective in reducing pollution events where other pollution sources dominate, such as in IL, TX and CA. Therefore, policies to reduce other emissions sources (e.g., industrial emissions) should also be considered, especially in places where the reduction in traffic volume was not effective in improving air quality (AQ). 
    more » « less