skip to main content


Search for: All records

Award ID contains: 2026814

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Non-pharmacologic interventions (NPIs) promote protective actions to lessen exposure risk to COVID-19 by reducing mobility patterns. However, there is a limited understanding of the underlying mechanisms associated with reducing mobility patterns especially for socially vulnerable populations. The research examines two datasets at a granular scale for five urban locations. Through exploratory analysis of networks, statistics, and spatial clustering, the research extensively investigates the exposure risk reduction after the implementation of NPIs to socially vulnerable populations, specifically lower income and non-white populations. The mobility dataset tracks population movement across ZIP codes for an origin–destination (O–D) network analysis. The population activity dataset uses the visits from census block groups (cbg) to points-of-interest (POIs) for network analysis of population-facilities interactions. The mobility dataset originates from a collaboration with StreetLight Data, a company focusing on transportation analytics, whereas the population activity dataset originates from a collaboration with SafeGraph, a company focusing on POI data. Both datasets indicated that low-income and non-white populations faced higher exposure risk. These findings can assist emergency planners and public health officials in comprehending how different populations are able to implement protective actions and it can inform more equitable and data-driven NPI policies for future epidemics. 
    more » « less
  2. New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies. 
    more » « less
  3. null (Ed.)
    Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties. 
    more » « less
  4. Abstract The objective of this study was to investigate the importance of multiple county-level features in the trajectory of COVID-19. We examined feature importance across 2787 counties in the United States using data-driven machine learning models. Existing mathematical models of disease spread usually focused on the case prediction with different infection rates without incorporating multiple heterogeneous features that could impact the spatial and temporal trajectory of COVID-19. Recognizing this, we trained a data-driven model using 23 features representing six key influencing factors affecting the pandemic spread: social demographics of counties, population activities, mobility within the counties, movement across counties, disease attributes, and social network structure. Also, we categorized counties into multiple groups according to their population densities, and we divided the trajectory of COVID-19 into three stages: the outbreak stage, the social distancing stage, and the reopening stage. The study aimed to answer two research questions: (1) The extent to which the importance of heterogeneous features evolved at different stages; (2) The extent to which the importance of heterogeneous features varied across counties with different characteristics. We fitted a set of random forest models to determine weekly feature importance. The results showed that: (1) Social demographic features, such as gross domestic product, population density, and minority status maintained high-importance features throughout stages of COVID-19 across 2787 studied counties; (2) Within-county mobility features had the highest importance in counties with higher population densities; (3) The feature reflecting the social network structure (Facebook, social connectedness index), had higher importance for counties with higher population densities. The results showed that the data-driven machine learning models could provide important insights to inform policymakers regarding feature importance for counties with various population densities and at different stages of a pandemic life cycle. 
    more » « less
  5. Abstract Deriving effective mobility control measures is critical for the control of COVID-19 spreading. In response to the COVID-19 pandemic, many countries and regions implemented travel restrictions and quarantines to reduce human mobility and thus reduce virus transmission. But since human mobility decreased heterogeneously, we lack empirical evidence of the extent to which the reductions in mobility alter the way people from different regions of cities are connected, and what containment policies could complement mobility reductions to conquer the pandemic. Here, we examined individual movements in 21 of the most affected counties in the United States, showing that mobility reduction leads to a segregated place network and alters its relationship with pandemic spread. Our findings suggest localized area-specific policies, such as geo-fencing, as viable alternatives to city-wide lockdown for conquering the pandemic after mobility was reduced. 
    more » « less
  6. null (Ed.)
    The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this article is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance ( D v ) and the activity density ( D a ) are used to quantify and evaluate human activities for 193 United States counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure of the agglomeration of the level of human activities based on the average distance of human activities across a city or a county (less distance could lead to a greater contact risk). Activity density provides a measure of level of overall activity level in a county or a city (more activity could lead to a greater risk). Accordingly, Pearson correlation analysis is used to examine the relationship between the two human activity indicators and the basic reproduction number in the following weeks. The results show statistically significant correlations between the indicators of human activities and the basic reproduction number in all counties, as well as a significant leader-follower relationship (time lag) between them. The results also show one to two weeks’ lag between the change in activity indicators and the decrease in the basic reproduction number. This result implies that the human activity indicators provide effective early indicators for the spread risk of the pandemic during the early stages of the outbreak. Hence, the results could be used by the authorities to proactively assess the risk of disease spread by monitoring the daily Venables distance and activity density in a proactive manner. 
    more » « less
  7. null (Ed.)
    We examined the effect of social distancing on changes in visits to urban hotspot points of interest. In a pandemic situation, urban hotspots could be potential superspreader areas as visits to urban hotspots can increase the risk of contact and transmission of a disease among a population. We mapped census-block-group to point-of-interest (POI) movement networks in 16 cities in the United States. We adopted a modified coarse-grain approach to examine patterns of visits to POIs among hotspots and non-hotspots from January to May 2020. Also, we conducted chi-square tests to identify POIs with significant flux-in changes during the analysis period. The results showed disparate patterns across cities in terms of reduction in hotspot POI visitors. Sixteen cities were divided into two categories using a time series clustering method. In one category, which includes the cities of San Francisco, Seattle and Chicago, we observed a considerable decrease in hotspot POI visitors, while in another category, including the cities of Austin, Houston and San Diego, the visitors to hotspots did not greatly decrease. While all the cities exhibited overall decreased visitors to POIs, one category maintained the proportion of visitors to hotspot POIs. The proportion of visitors to some POIs (e.g. restaurants) remained stable during the social distancing period, while some POIs had an increased proportion of visitors (e.g. grocery stores). We also identified POIs with significant flux-in changes, indicating that related businesses were greatly affected by social distancing. The study was limited to 16 metropolitan cities in the United States. The proposed methodology could be applied to digital trace data in other cities and countries to study the patterns of movements to POIs during the COVID-19 pandemic. 
    more » « less