This study explores the application of deep learning to the segmentation of DENSE cardiovascular magnetic resonance (CMR) images, which is an important step in the analysis of cardiac deformation and may help in the diagnosis of heart conditions. A self-adapting method based on the nnU-Net framework is introduced to enhance the accuracy of DENSE-MR image segmentation, with a particular focus on the left ventricle myocardium (LVM) and left ventricle cavity (LVC), by leveraging the phase information in the cine DENSE-MR images. Two models are built and compared: 1) ModelM, which uses only the magnitude of the DENSE-MR images; and 2) ModelMP, which incorporates magnitude and phase images. DENSE-MR images from 10 human volunteers processed using the DENSE-Analysis MATLAB toolbox were included in this study. The two models were trained using a 2D UNet-based architecture with a loss function combining the Dice similarity coefficient (DSC) and cross-entropy. The findings show the effectiveness of leveraging the phase information with ModelMP resulting in a higher DSC and improved image segmentation, especially in challenging cases, e.g., at early systole and with basal and apical slices. 
                        more » 
                        « less   
                    
                            
                            Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
                        
                    
    
            Image synthesis from corrupted contrasts increases the diver- sity of diagnostic information available for many neurological diseases. Recently the image-to-image translation has experienced signi cant lev- els of interest within medical research, beginning with the successful use of the Generative Adversarial Network (GAN) to the introduction of cyclic constraint extended to multiple domains. However, in current ap- proaches, there is no guarantee that the mapping between the two image domains would be unique or one-to-one. In this paper, we introduce a novel approach to unpaired image-to-image translation based on the invertible architecture. The invertible property of the ow-based architecture assures a cycle-consistency of image-to-image translation without additional loss functions. We utilize the temporal informa- tion between consecutive slices to provide more constraints to the optimization for transforming one domain to another in un- paired volumetric medical images. To capture temporal structures in the medical images, we explore the displacement between the consec- utive slices using a deformation eld. In our approach, the deformation eld is used as a guidance to keep the translated slides realistic and con- sistent across the translation. The experimental results have shown that the synthesized images using our proposed approach are able to archive a competitive performance in terms of mean squared error, peak signal- to-noise ratio, and structural similarity index when compared with the existing deep learning-based methods on three standard datasets, i.e. HCP, MRBrainS13 and Brats2019. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1946391
- PAR ID:
- 10320012
- Date Published:
- Journal Name:
- International Conference on Medical Image Computing and Computer-Assisted Intervention
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance.more » « less
- 
            This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that our approach accomplishes comparable or better performance than other state-of-the-art approaches in terms of the Dice coefficient and the average perpendicular distance. Index Terms—Magnetic Resonance Imaging; Batch Normalization; Exponential Linear Unitsmore » « less
- 
            An unsupervised image-to-image translation (UI2I) task deals with learning a mapping between two domains without paired images. While existing UI2I methods usually require numerous unpaired images from different domains for training, there are many scenarios where training data is quite limited. In this paper, we argue that even if each domain contains a single image, UI2I can still be achieved. To this end, we propose TuiGAN, a generative model that is trained on only two unpaired images and amounts to one-shot unsupervised learning. With TuiGAN, an image is translated in a coarse-to-fine manner where the generated image is gradually refined from global structures to local details. We conduct extensive experiments to verify that our versatile method can outperform strong baselines on a wide variety of UI2I tasks. Moreover, TuiGAN is capable of achieving comparable performance with the state-of-the-art UI2I models trained with sufficient data.more » « less
- 
            In this paper, we propose an image-translation-based unsupervised domain adaptation approach that iteratively trains an image translation and a classification network using each other. In Phase A, a classification network is used to guide the image translation to preserve the content and generate images. In Phase B, the generated images are used to train the classification network. With each step, the classification network and generator improve each other to learn the target domain representation. Detailed analysis and the experiments are testimony of the strength of our approach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    