Using medical images to evaluate disease severity and change over time is a routine and important task in clinical decision making. Grading systems are often used, but are unreliable as domain experts disagree on disease severity category thresholds. These discrete categories also do not reflect the underlying continuous spectrum of disease severity. To address these issues, we developed a convolutional Siamese neural network approach to evaluate disease severity at single time points and change between longitudinal patient visits on a continuous spectrum. We demonstrate this in two medical imaging domains: retinopathy of prematurity (ROP) in retinal photographs and osteoarthritis in knee radiographs. Our patient cohorts consist of 4861 images from 870 patients in the Imaging and Informatics in Retinopathy of Prematurity (i-ROP) cohort study and 10,012 images from 3021 patients in the Multicenter Osteoarthritis Study (MOST), both of which feature longitudinal imaging data. Multiple expert clinician raters ranked 100 retinal images and 100 knee radiographs from excluded test sets for severity of ROP and osteoarthritis, respectively. The Siamese neural network output for each image in comparison to a pool of normal reference images correlates with disease severity rank (
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020
Image synthesis from corrupted contrasts increases the diver-
sity of diagnostic information available for many neurological diseases.
Recently the image-to-image translation has experienced signicant lev-
els of interest within medical research, beginning with the successful use
of the Generative Adversarial Network (GAN) to the introduction of
cyclic constraint extended to multiple domains. However, in current ap-
proaches, there is no guarantee that the mapping between the two image
domains would be unique or one-to-one. In this paper, we introduce a
novel approach to unpaired image-to-image translation based on
the invertible architecture. The invertible property of the
ow-based
architecture assures a cycle-consistency of image-to-image translation
without additional loss functions. We utilize the temporal informa-
tion between consecutive slices to provide more constraints to
the optimization for transforming one domain to another in un-
paired volumetric medical images. To capture temporal structures
in the medical images, we explore the displacement between the consec-
utive slices using a deformation eld. In our approach, the deformation
eld is used as a guidance to keep the translated slides realistic and con-
sistent across the translation. The experimental results have shown that
the synthesized images using our proposed approach are able to archive
a competitive performance in terms of mean squared error, peak signal-
to-noise ratio, and structural similarity index when compared with the
existing deep learning-based methods more »
- Award ID(s):
- 1946391
- Publication Date:
- NSF-PAR ID:
- 10320012
- Journal Name:
- International Conference on Medical Image Computing and Computer-Assisted Intervention
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ρ = 0.87 for ROP andρ = 0.89 for osteoarthritis), both within and between themore » -
Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skullmore »
-
This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that ourmore »
-
This work presents a novel deep learning architecture called BNU-Net for the purpose of cardiac segmentation based on short-axis MRI images. Its name is derived from the Batch Normalized (BN) U-Net architecture for medical image segmentation. New generations of deep neural networks (NN) are called convolutional NN (CNN). CNNs like U-Net have been widely used for image classification tasks. CNNs are supervised training models which are trained to learn hierarchies of features automatically and robustly perform classification. Our architecture consists of an encoding path for feature extraction and a decoding path that enables precise localization. We compare this approach with a parallel approach named U-Net. Both BNU-Net and U-Net are cardiac segmentation approaches: while BNU-Net employs batch normalization to the results of each convolutional layer and applies an exponential linear unit (ELU) approach that operates as activation function, U-Net does not apply batch normalization and is based on Rectified Linear Units (ReLU). The presented work (i) facilitates various image preprocessing techniques, which includes affine transformations and elastic deformations, and (ii) segments the preprocessed images using the new deep learning architecture. We evaluate our approach on a dataset containing 805 MRI images from 45 patients. The experimental results reveal that ourmore »
-
null (Ed.)Osteoarthritis (OA) is the most common form of arthritis and can often occur in the knee. While convolutional neural networks (CNNs) have been widely used to study medical images, the application of a 3-dimensional (3D) CNN in knee OA diagnosis is limited. This study utilizes a 3D CNN model to analyze sequences of knee magnetic resonance (MR) images to perform knee OA classification. An advantage of using 3D CNNs is the ability to analyze the whole sequence of 3D MR images as a single unit as opposed to a traditional 2D CNN, which examines one image at a time. Therefore, 3D features could be extracted from adjacent slices, which may not be detectable from a single 2D image. The input data for each knee were a sequence of double-echo steady-state (DESS) MR images, and each knee was labeled by the Kellgren and Lawrence (KL) grade of severity at levels 0–4. In addition to the 5-category KL grade classification, we further examined a 2-category classification that distinguishes non-OA (KL ≤ 1) from OA (KL ≥ 2) knees. Clinically, diagnosing a patient with knee OA is the ultimate goal of assigning a KL grade. On a dataset with 1100 knees, the 3Dmore »