skip to main content


Title: Acid-Base Homeostasis and Implications to the Phenotypic Behaviors of Cancer
Acid-base homeostasis is a fundamental property of living cells and its persistent disruption in human cells can lead to a wide range of diseases. We have conducted computational modeling and analysis of transcriptomic data of 4750 human tissue samples of nine cancer types in the TCGA database. Built on our previous study, we have quantitatively estimated the (average) production rate of OH− by cytosolic Fenton reactions, which continuously disrupt the intracellular pH homeostasis. Our predictions indicate that all or a subset of 43 reprogrammed metabolisms (RMs) are induced to produce net protons (H+) at comparable rates of Fenton reactions to keep the intracellular pH stable. We have then discovered that a number of well-known phenotypes of cancers, including increased growth rate, metastasis rate and local immune cell composition, can be naturally explained in terms of the Fenton reaction level and the induced RMs. This study strongly suggests the possibility to have a unified framework for studies of cancer-inducing stressors, adaptive metabolic reprogramming, and cancerous behaviors. In addition, strong evidence is provided to demonstrate that a popular view of that Na+/H+ exchangers, along with lactic acid exporters and carbonic anhydrases are responsible for the intracellular alkalization and extracellular acidification in cancer may not be justified.  more » « less
Award ID(s):
2047631
NSF-PAR ID:
10320021
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Genomics proteomics and bioinformatics
ISSN:
2210-3244
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching‐resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular‐level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching‐resistant and bleaching‐susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching‐susceptible corals had lower intracellular pH than bleaching‐resistant corals at the peak of bleaching for both symbiont‐hosting and symbiont‐free cells, indicating greater disruption of acid–base homeostasis in bleaching‐susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid–base regulation was significantly impaired at the cellular level even in bleaching‐resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid–base regulation may further exacerbate the physiological effects of climate change.

     
    more » « less
  2. N/A (Ed.)

    Optimal function in the brain, especially in hippocampus—an area involved in learning and memory—requires tight regulation of intracellular pH (pHi) within neurons and neuroglial. The Na‐H exchangers (NHEs) are the major family of acid/base proteins involved in regulating pHi in the absence of CO2/HCO3. In the present study, we used the pH‐sensitive dye BCECF to examine the regulation of steady‐state pHi and the recovery of pHi from NH4+ ‐induced intracellular acid loads in HC neurons and astrocytes, co‐cultured from embryonic (E18‐20) Sprague Dawley rats, and studied in CO2/HCO3 −‐free HEPES buffered (“HEPES”) solutions. After at least 14‐days in a CO2/HCO3 – incubator, cells were removed, loaded with BCECF, and placed in a recording chamber with flowing HEPES. At the beginning of each experiment, we measured pHi (checkpoint A) after allowing pHi to stabilize for 5 minutes (checkpoint C), and reported mean “initial pHi”/SEM for neurons as 7.351/0.0597; N=37 (astrocytes: 7.189/0.0118, N=25) the value at checkpoint C = (pHi)C. After using the twin paired NH4+ ‐pulse protocol to acid load cells, we find that—after the pHi recovery from the first acid load—the average neuronal steady‐state pHi (now at checkpoint E; (pHi)E) is 6.953/0.0601(astrocytes: 7.037/0.0081). After the second NH4+ pulse the neuronal steady‐state pHi (now at checkpoint F; (pHi)F) in neurons is 6.937/0.010 (astrocytes: 7.020/0.0062). The recovery from acidosis is fit with a double exponential (DExp) which we replot as dpHi/dt vs pHi. With this traditional approach, dpHi/dt, the fit as it approaches the asymptotic pHi, becomes slightly non‐linear. To exploit the mainly linearity portion of the dpHi/dt vs. pHi plot (from the DExp fit) of the double exponential, we fit these dpHi/dt vs. pHi points with a DExp with a quasi‐ single exponential (SExp) to produce a quasi–single‐exponential rate constant (kqSExp) measured as dpH/dt. This analysis—when transformed to the pHi vs. time domain—generally produces a very good fit to the original pHi vs. time data. The mean kqSExp1 in neurons is 0.0054/ 0.0008 (astrocytes: 0.0107/0.0002) whereas the mean kqSExp2 in neurons is 0.0055/0.0008 (astrocytes: 0.0010/0.0003). We summarize the twin pHi recoveries from individual experiments in which we display as thumbnails the quasi–single‐exponential dpHi/dt line segments that represent the pHi recoveries from the first and second NH3/NH4+ pulses. These new analytical approaches may ultimately provide mechanistic insight into cell‐to‐cell heterogeneity of pHi regulation in the nervous system.

     
    more » « less
  3. Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pH i ) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pH i imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pH i regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pH i regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO 2 -induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal. 
    more » « less
  4. null (Ed.)
    Glass nanopipettes have shown promise for applications in single-cell manipulation, analysis, and imaging. In recent years, plasmonic nanopipettes have been developed to enable surface-enhanced Raman spectroscopy (SERS) measurements for single-cell analysis. In this work, we developed a SERS-active nanopipette that can be used to perform long-term and reliable intracellular analysis of single living cells with minimal damage, which is achieved by optimizing the nanopipette geometry and the surface density of the gold nanoparticle (AuNP) layer at the nanopipette tip. To demonstrate its ability in single-cell analysis, we used the nanopipette for intracellular pH sensing. Intracellular pH (pH i ) is vital to cells as it influences cell function and behavior and pathological conditions. The pH sensitivity was realized by simply modifying the AuNP layer with the pH reporter molecule 4-mercaptobenzoic acid. With a response time of less than 5 seconds, the pH sensing range is from 6.0 to 8.0 and the maximum sensitivity is 0.2 pH units. We monitored the pH i change of individual HeLa and fibroblast cells, triggered by the extracellular pH (pH e ) change. The HeLa cancer cells can better resist pH e change and adapt to the weak acidic environment. Plasmonic nanopipettes can be further developed to monitor other intracellular biomarkers. 
    more » « less
  5. Abstract

    Iron oxide nanoparticles (IONPs) have garnered significant attention as a promising platform for reactive oxygen species (ROS)‐dependent disease treatment, owing to their remarkable biocompatibility and Fenton catalytic activity. However, the low catalytic activity of IONPs is a major hurdle in their clinical translation. To overcome this challenge, IONPs of different compositions are examined for their Fenton reaction under pharmacologically relevant conditions. The results show that wüstite (FeO) nanoparticles exhibit higher catalytic activity than magnetite (Fe3O4) or maghemite (γ‐Fe2O3) of matched size and coating, despite having a similar surface oxidation state. Further analyses suggest that the high catalytic activity of wüstite nanoparticles can be attributed to the presence of internal low‐valence iron (Fe0and Fe2+), which accelerates the recycling of surface Fe3+to Fe2+through intraparticle electron transport. Additionally, ultrasmall wüstite nanoparticles are generated by tuning the thermodecomposition‐based nanocrystal synthesis, resulting in a Fenton reaction rate 5.3 times higher than that of ferumoxytol, an FDA‐approved IONP. Compared with ferumoxytol, wüstite nanoparticles substantially increase the level of intracellular ROS in mouse mammary carcinoma cells. This study presents a novel mechanism and pivotal improvement for the development of highly efficient ROS‐inducing nanozymes, thereby expanding the horizons for their therapeutic applications.

     
    more » « less