skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrocatalytic nitrate reduction with Co-based catalysts: comparison of DIM, TIM and cyclam ligands
Over the past century, the global concentration of environmental nitrate has increased significantly from human activity, which has resulted in the contamination of drinking water and aquatic hypoxia around the world, so the development of effective nitrate-reducing agents is urgent. This work compares three potential macrocycle-based nitrate reduction electrocatalysts: [Co(DIM)] 3+ , [Co(cyclam)] 3+ and [Co(TIM)] 3+ . Although all three complexes have similar structures, only [Co(DIM)] 3+ has been experimentally determined to be an active electrocatalyst for selective nitrate reduction to produce ammonia in water. While [Co(cyclam)] 3+ can reduce aqueous nitrate to ammonia and hydroxylamine at heavy metal electrodes, [Co(TIM)] 3+ is inactive for the reduction of nitrate. As an initial step to understanding what structural and electronic properties are important for efficient electrocatalysts for nitrate reduction, density functional theory (DFT) was employed to investigate the electronic structure of the three Co complexes, with the reduction potentials calibrated to experimental results. Moreover, DFT was employed to explore four different reaction mechanisms for the first steps of nitrate reduction. The calculated reaction barriers reveal how a combination of electron transfer in a redox non-innocent complex, substrate binding, and intramolecular hydrogen bonding dictates the activity of Co-based catalysts toward nitrate reduction.  more » « less
Award ID(s):
2102442
PAR ID:
10320060
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
50
Issue:
35
ISSN:
1477-9226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electro- and photocatalytic reduction of N 2 to NH 3 —the nitrogen reduction reaction (NRR)—is an environmentally- and energy-friendly alternative to the Haber-Bosch process for ammonia production. There is a great demand for the development of novel semiconductor-based electrocatalysts with high efficiency and stability for the direct conversion of inert substrates—including N 2 to ammonia—using visible light irradiation under ambient conditions. Herein we report electro-, and photocatalytic NRR with transition metal dichalcogenides (TMDCs), viz MoS 2 and WS 2 . Improved acid treatment of bulk TMDCs yields exfoliated TMDCs (exTMDCs) only a few layers thick with ∼10% S vacancies. Linear scan voltammograms on exMoS 2 and exWS 2 electrodes reveal significant NRR activity for exTMDC-modified electrodes, which is greatly enhanced by visible light illumination. Spectral measurements confirm ammonia as the main reaction product of electrocatalytic and photocatalytic NRR, and the absence of hydrazine byproduct. Femtosecond-resolved transient absorption studies provide direct evidence of interaction between photo-generated excitons/trions with N 2 adsorbed at S vacancies. DFT calculations corroborate N 2 binding to exMoS 2 at S-vacancies, with substantial π -backbonding to activate dinitrogen. Our findings suggest that chemically functionalized exTMDC materials could fulfill the need for highly-desired, inexpensive catalysts for the sustainable production of NH 3 using Sunlight under neutral pH conditions without appreciable competing production of H 2 . 
    more » « less
  2. Three complexes based on an Ir–M (M = FeII, CoII, and NiII) heterobimetallic core and 2-(diphenylphosphino)pyridine (Ph2PPy) ligand were synthesized via the reaction of trans-[IrCl(CO)(Ph2PPy)2] and the corresponding metal chloride. Their structures were established by single-crystal X-ray diffraction as [Ir(CO)(μ-Cl)(μ-Ph2PPy)2FeCl2]·2CH2Cl2 (2), [IrCl(CO)(μ- Ph2PPy)2CoCl2]·2CH2Cl2 (3), and [Ir(CO)(μ-Cl)(μ-Ph2PPy)2NiCl2]·2CH2Cl2 (4). Time-dependent DFT computations suggest a donor-acceptor interaction between a filled 5dz2 orbital on iridium and an empty orbital on the first-row metal atom, which is supported by UV-vis studies. Magnetic moment measurements show that the first-row metals are in their high- spin electronic configurations. Cyclic voltammetry data show that all the complexes undergo irreversible decomposition upon either reduction or oxidation. Reduction of 4 proceeds through ECE mechanism. While these complexes are not stable to electrocatalysis conditions, the data presented here refine our understanding of the bonding synergies of the first-row and third-row metals. 
    more » « less
  3. Abstract A new series of mono‐ and bis‐alkynyl CoIII(TIM) complexes (TIM=2,3,9,10‐tetramethyl‐1,4,8,11‐tetraazacyclotetradeca‐1,3,8,10‐tetraene) is reported herein. Thetrans‐[Co(TIM)(C2R)Cl]+complexes were prepared from the reaction betweentrans‐[Co(TIM)Cl2]PF6and HC2R (R=tri(isopropyl)silyl or TIPS (1), ‐C6H4‐4‐tBu (2), ‐C6H4‐4‐NO2(3 a), andN‐mesityl‐1,8‐naphthalimide or NAPMes(4 a)) in the presence of Et3N. The intermediate complexes of the typetrans‐[Co(TIM)(C2R)(NCMe)](PF6)(OTf),3 band4 b, were obtained by treating3 aand4 a, respectively, with AgOTf in CH3CN. Furthermore, bis‐alkynyltrans‐[Co(TIM)(C2R)2]PF6complexes,3 cand4 c, were generated following a second dehydrohalogenation reaction between3 band4 b, respectively, and the appropriate HC2R in the presence of Et3N. These new complexes have been characterized using X‐ray diffraction (2,3 a,4 a, and4 c), IR,1H NMR, UV/Vis spectroscopy, fluorescent spectroscopy (4 c), and cyclic voltammetry. 
    more » « less
  4. The electrochemical reduction of nitrate to ammonia is of interest as an energy/environmentally friendly source of ammonia for agriculture and energy applications and as a route toward groundwater purification. We report in situ photoemission data, electrochemical results, and density functional theory calculations that demonstrate vanadium oxide—prepared by ambient exposure of V metal, with a distribution of surface V3+and V4+oxidation states—specifically adsorbs and reduces nitrate to ammonia at pH 3.2 at cathodic potentials. Negligible cathodic activity in the absence of NO3indicates high selectivity with respect to non-nitrate reduction processes. In situ photoemission data indicate that nitrate adsorption and reduction to adsorbed NO2is a key step in the reduction process. NO3RR activity is also observed at pH 7, albeit at a much slower rate. The results indicate that intermediate (non-d0) oxidation states are important for both molecular nitrogen and nitrate reduction to ammonia. 
    more » « less
  5. Abstract Electrochemical upcycling of nitrate into ammonia at ambient conditions offers a sustainable synthesis pathway that can complement the current industrial NH3production from the Haber–Bosch process. One of the key rate‐limiting steps is the effective desorption of gaseous or interfacial bubble products, mainly NH3with some minor side products of nitrogen and hydrogen, from the electrode surfaces to sustain available sites for the NO3reduction reaction. To facilitate the gaseous product desorption from the catalytic sites, hydrophobic polytetrafluoroethylene (PTFE) nanoparticles are blended within a CuO catalyst layer, which is shown to eliminate the undesirable accumulation and blockage of electrode surfaces and largely decouples the electron‐ and phase‐transfer processes. The NH3partial current density normalized by the electrochemically active surface area (ECSA) increases by nearly a factor of 17.8 from 11.4 ± 0.1 to 203.3 ± 1.8 mA cm−2ECSA. The DFT and ab‐initio molecular dynamics simulations suggest that the hydrophobic PTFE nanoparticles may serve as segregated islands to enhance the spillover and transport the gaseous products from electrocatalysts to the PTFE. Thus, a higher ammonia transfer is achieved for the mixed PTFE/CuO electrocatalyst. This new and simple strategy is expected to act as inspiration for future electrochemical gas‐evolving electrode design. 
    more » « less