skip to main content

Title: Data report: major and trace element and Nd-Pb-Hf isotope composition of the Site U1504 metamorphic basement in the South China Sea (IODP Expedition 367/368/368X)
During International Ocean Discovery Program (IODP) Expedition 367/368/368X, Holes U1504A and U1504B were cored on the continental shelf (2817–2843 meters below sea level) in the northern South China Sea (SCS). A total of 106 m of metamorphic basement was penetrated that consists of greenish gray, deformed mylonitic, epidote-chlorite to calc-silicate schists containing granofels clasts ("greenschist"). Here we report bulk-rock major and trace element data from 17 greenschist samples, from which a subset of 9 samples was additionally analyzed for Pb-Nd-Hf isotope ratios. Fluid-mobile elements (U, Li, Rb, K, and Cs) behave somewhat erratically, yet tectonic discrimination and primitive mantle–normalized multielement diagrams reveal signatures that are typical for enriched intraplate basalts. These include a negative Pb anomaly (Ce/Pb = 34 ± 10), relative enrichments of Nb and Ta (Nb/La = 1.5 ± 0.3; Th/Nb = 0.07 ± 0.01), and a steep rare earth element pattern (La/Sm = 3.7 ± 0.7; Ho/Lu = 2.9 ± 0.2). The high values of the uranogenic 206Pb/204Pb (21.2–25.9) and 207Pb/204Pb (15.7–16.0) and their strong correlation point to a postformation "U addition event" that took place at 329 Ma ± 2 My (late Carboniferous). 143Nd/144Nd and 176Hf/177Hf data are consistent with the origin from an enriched Paleozoic age mantle source. In summary, our data suggest that the protolith of the Site U1504 metamorphic basement was an ocean-island basalt–type igneous rock that deformed during the late Paleozoic and was part of the prerift crustal basement of the SCS Basin.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During International Ocean Discovery Program Expeditions 367/368/368X, Hole U1501D was cored on the continental shelf (2846 meters below sea level) in the northern South China Sea (SCS). In Hole U1501D, sediments were recovered from 433.5 to 644.3 meters below seafloor (mbsf) and the acoustic basement was penetrated at 598.91 mbsf. The acoustic basement is a stratigraphic boundary at which late Eocene Cenozoic sediments likely unconformably overlay heterolithic Mesozoic sandstones that are intercalated with rare siltstones and subordinate conglomerate with pebble- and cobble-sized igneous clasts of proximal provenance. Here, we present major and trace elements and Sr-Nd-Pb-Hf isotope data of a fine-grained granite pebble, a medium-grained granite cobble, and a porphyritic volcanic pebble. The data show that these clasts are relics of the Mesozoic subduction-related magmatism that was active along the southeast Asian margin prior to the Cenozoic rifting. The Pb isotope composition of the clasts partially overlaps with the enriched Cenozoic mid-ocean-ridge basalt type and intraplate basalts of the SCS. However, the clasts are distinct from the Cenozoic basalt volcanism in Sr-Nd-Hf isotope space. Thus, Sr-Nd-Hf isotope systematics of the Cenozoic basalts might be useful in detecting traces of crustal contamination in the earliest rift basalts of the SCS that may have erupted through the Mesozoic continental basement. 
    more » « less
  2. Abstract

    Exhumed serpentinites are fragments of ancient oceanic lithosphere or mantle wedge that record deep fluid‐rock interactions and metasomatic processes. While common in suture zones after closure of ocean basins, in non‐collisional orogens their origin and tectonic significance are not fully understood. We study serpentinite samples from five river basins in a segment of the non‐collisional Andean orogen in Ecuador (Cordillera Real). All samples are fully serpentinized with antigorite as the main polymorph, while spinel is the only relic phase. Watershed delineation analysis and in‐situ B isotope data suggest four serpentinite sources, linked to mantle wedge (δ11B = ∼−10.6 to −0.03‰) and obducted ophiolite (δ11B = −2.51 to +5.73‰) bodies, likely associated with Triassic, Jurassic‐Early Cretaceous, and potentially Late Cretaceous‐Paleocene high‐pressure (HP)–low‐temperature metamorphic sequences. Whole‐rock trace element data and in‐situ B isotopes favor serpentinization by a crust‐derived metamorphic fluid. Thermodynamic modeling in two samples suggests serpentinization at ∼550–500°C and pressures from 2.5 to 2.2 GPa and 1.0–0.6 GPa for two localities. Both samples record a subsequent overprint at ∼1.5–0.5 GPa and 680–660°C. In the Andes, regional phases of slab rollback have been reported since the mid‐Paleozoic to Late Cretaceous. This tectonic scenario favors the extrusion of HP rocks into the forearc and the opening of back‐arc basins. Subsequent compressional phases trigger short‐lived subduction in the back‐arc that culminates with ophiolite obduction and associated metamorphic rock exhumation. Thus, we propose that serpentinites in non‐collisional orogens are sourced from extruded slivers of mantle wedge in the forearc or obducted ophiolite sequences associated with regional back‐arc basins.

    more » « less
  3. Abstract

    The Mado Megamullion is an oceanic core complex (OCC) in the Shikoku back‐arc basin within the Philippine Sea Plate. Mantle peridotites (serpentinized) recovered by six dredge and submersible cruises exhibit signatures of extensive deformation. Amorphous pseudomorphs after plagioclase in many of the samples, as well as plagioclase‐spinel intergrowths, are clear evidence of melt stagnation and mantle reaction. Spinels show a wide range of compositions in terms of their Cr#, Mg#, and TiO2content. The presence of apparently magmatic high‐temperature pargasitic amphibole in veins and as replacement of clinopyroxene suggests that it may be a primary or near‐primary mineral crystallized from a hydrous melt which is unusual for abyssal peridotites. Two trace‐element populations of clinopyroxenes are in equilibrium with depleted and enriched basaltic melts, respectively. Rare‐earth element (REE) in the most depleted clinopyroxenes are modeled by 10% fractional melting except for a ubiquitous La‐Ce “kick.” Multiple models of open system melting combined with subsequent mixing of an enriched melt can explain the REE data. Broadly it appears that the peridotites underwent variable degrees of partial melting with moderate influx of enriched melts, which agrees with the other textural and chemical evidence of melt‐rock reaction and re‐fertilization. The compositions of the accumulated melts simulated by the open system models reproduce the enrichments in fluid mobile elements (Ba, U, and Pb) observed in basalts dredged from the Shikoku basin. Back‐arc basin peridotites at Mado Megamullion appear to have a unique petrographic and geochemical character that is distinct from those of peridotites exposed at the seafloor after formation from mid‐ocean ridges.

    more » « less
  4. Abstract

    Along the northern margin of the Arabia‐Eurasia collision zone in the western Greater Caucasus, the Main Caucasus Thrust (MCT) juxtaposes Paleozoic crystalline basement to the north against Mesozoic metasedimentary and volcaniclastic rocks to the south. The MCT is commonly assumed to be the trace of an active plate‐boundary scale structure that accommodates Arabia‐Eurasia convergence, but field data supporting this interpretation are equivocal. Here we investigate the deformation history of the rocks juxtaposed across the MCT in Georgia using field observations, microstructural analysis, U‐Pb and40Ar/39Ar geochronology, and40Ar/39Ar and (U‐Th)/He thermochronology. Zircon U‐Pb analyses show that Greater Caucasus crystalline rocks formed in the Early Paleozoic on the margin of Gondwana. Low‐pressure/temperature amphibolite‐facies metamorphism of these metasedimentary rocks and associated plutonism likely took place during Carboniferous accretion onto the Laurussian margin, as indicated by igneous and metamorphic zircon U‐Pb ages of ~330–310 Ma.40Ar/39Ar ages of ~190–135 Ma from muscovite in a greenschist‐facies shear zone indicate that the MCT likely developed during Mesozoic inversion and/or rifting of the Caucasus Basin. A Mesozoic40Ar/39Ar biotite age with release spectra indicating partial resetting and Cenozoic (<40 Ma) apatite and zircon (U‐Th)/He ages imply at least ~5–8 km of Greater Caucasus basement exhumation since ~10 Ma in response to Arabia‐Eurasia collision. Cenozoic reactivation of the MCT may have accommodated a fraction of this exhumation. However, Cenozoic zircon (U‐Th)/He ages in both the hanging wall and footwall of the MCT require partitioning a substantial component of this deformation onto structures to the south.

    more » « less
  5. Abstract

    The tectonometamorphic evolution of the southern Appalachians, which results from multiple Paleozoic orogenies (Taconic, Neoacadian, and Alleghanian), has lacked a consensus interpretation regarding its thermal‐metamorphic history. The Blue Ridge terranes have remained the focus of the debate, with the interpreted timing of regional Barrovian metamorphism and associated deformation ranging from early (Taconic) to late Paleozoic (Alleghanian). New monazite U‐Pb geochronology and thermobarometric data are integrated with previously reported geo‐ and thermochronology to delimit the Paleozoic thermal‐metamorphic evolution of these terranes. Monazite compositional, textural, and U‐Pb age systematics are remarkably consistent for all samples, yielding a single dominant age mode for each sample. The western, central, and eastern Blue Ridge terranes yield weighted mean monazite U‐Pb ages of 450–441, 459–457, and 458–453 Ma, respectively. Thermodynamic modeling using mineral assemblages yields peak conditions of 600°C–650°C and 5.8–8.9 kbar for staurolite and kyanite grade western Blue Ridge units, including the stratigraphically youngest unit in the Murphy syncline, which also yields a weighted mean monazite U‐Pb age of 441 Ma. The Taconic metamorphic core of the central Blue Ridge yields peak conditions of 775°C and ∼11.5 kbar. Combined, these ages indicate that the relatively intact Barrovian metamorphic progression mapped across the Blue Ridge of Tennessee, North Carolina, and northern Georgia is solely of Ordovician (Taconic) age. Synthesis of this new data with existing geo‐ and thermochronology support a model of Barrovian metamorphism resulting from construction of a Taconic accretionary wedge and subduction complex, followed by post‐Taconic unroofing during Neoacadian and Alleghanian thrusting.

    more » « less