In the ever-evolving landscape of autonomous vehicles, competition and research of high-speed autonomous racing emerged as a captivating frontier, pushing the limits of perception, planning, and control. Autonomous racing presents a setup where the intersection of cutting-edge software and hardware development sparks unprecedented opportunities and confronts unique challenges. The motorsport axiom, “If everything seems under control, then you are not going fast enough,” resonates in this special issue, underscoring the demand for algorithms and hardware that can navigate at the cutting edge of control, traction, and agility. In pursuing autonomy at high speeds, the racing environment becomes a crucible, pushing autonomous vehicles to execute split-second decisions with high precision. Autonomous racing, we believe, offers a litmus test for the true capabilities of self-driving software. Just as racing has historically served as a proving ground for automotive technology, autonomous racing now presents itself as the crucible for testing self-driving algorithms. While routine driving situations dominate much of the autonomous vehicle operations, focusing on extreme situations and environments is crucial to support investigation into safety benefits. The urgency of advancing highspeed autonomy is palpable in burgeoning autonomous racing competitions like Formula Student Driverless, F1TENTH autonomous racing, Roborace, and the Indy Autonomous Challenge. These arenas provide a literal testbed for testing perception, planning, and control algorithms and symbolize the accelerating traction of autonomous racing as a proving ground for agile and safe autonomy. Our special issue focuses on cutting-edge research into software and hardware solutions for highspeed autonomous racing. We sought contributions from the robotics and autonomy communities that delve into the intricacies of head-to-head multi-agent racing: modeling vehicle dynamics at high speeds, developing advanced perception, planning, and control algorithms, as well as the demonstration of algorithms, in simulation and in real-world vehicles. While presenting recent developments for autonomous racing, we believe these special issue papers will also create an impact in the broader realm of autonomous vehicles.
Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing
The rising popularity of self-driving cars has led to the emergence of a new research field in the recent years: Autonomous racing. Researchers are developing software and hardware for high performance race vehicles which aim to operate autonomously on the edge of the vehicles limits: High speeds, high accelerations, low reaction times, highly uncertain, dynamic and adversarial environments. This paper represents the first holistic survey that covers the research in the field of autonomous racing. We focus on the field of autonomous racecars only and display the algorithms, methods and approaches that are used in the fields of perception, planning and control as well as end-to-end learning. Further, with an increasing number of autonomous racing competitions, researchers now have access to a range of high performance platforms to test and evaluate their autonomy algorithms. This survey presents a comprehensive overview of the current autonomous racing platforms emphasizing both the software-hardware co-evolution to the current stage. Finally, based on additional discussion with leading researchers in the field we conclude with a summary of open research challenges that will guide future researchers in this field.
more »
« less
- Award ID(s):
- 2046582
- NSF-PAR ID:
- 10320141
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a parallel implementation of CMA-ES which enables simulations to proceed 6 times faster than real-world rollouts. We show our approach can reduce the lap times in autonomous racing, given a fixed computational budget. For all tested tracks, our method provides the lowest lap time, and relative improvements in lap time between 7-21%. We demonstrate improvements over a naive random search method with equivalent computational budget of over 15 seconds/lap, and improvements over expert solutions of over 2 seconds/lap. We further compare the performance of our method against hand-tuned solutions submitted by over 30 international teams, comprised of graduate students working in the field of autonomous vehicles. Finally, we discuss the effectiveness of utilizing an online planning mechanism to reduce the reality gap between our simulation and actual tests.more » « less
-
Self-driving autonomous vehicles (AVs) have recently gained popularity as a research topic. The safety of AVs is exceptionally important as failure in the design of an AV could lead to catastrophic consequences. AV systems are highly heterogeneous with many different and complex components, so it is difficult to perform end-to-end testing. One solution to this dilemma is to evaluate AVs using simulated racing competition. In this thesis, we present a simulated autonomous racing competition, Generalized RAcing Intelligence Competition (GRAIC). To compete in GRAIC, participants need to submit their controller files which are deployed on a racing ego-vehicle on different race tracks. To evaluate the submitted controller, we also developed a testing pipeline, Autonomous System Operations (AutOps). AutOps is an automated, scalable, and fair testing pipeline developed using software engineering techniques such as continuous integration, containerization, and serverless computing. In order to evaluate the submitted controller in non-trivial circumstances, we populate the race tracks with scenarios, which are pre-defined traffic situations commonly seen in the real road. We present a dynamic scenario testing strategy that generates new scenarios based on results of the ego-vehicle passing through previous scenarios.more » « less
-
null (Ed.)The deployment and evaluation of learning algorithms on autonomous vehicles (AV) is expensive, slow, and potentially unsafe. This paper details the F1TENTH autonomous racing platform, an open-source evaluation framework for training, testing, and evaluating autonomous systems. With 1/10th-scale low-cost hardware and multiple virtual environments, F1TENTH enables safe and rapid experimentation of AV algorithms even in laboratory research settings. We present three benchmark tasks and baselines in the setting of autonomous racing, demonstrating the flexibility and features of our evaluation environment.more » « less
-
Escalante, Hugo Jair ; Hadsell, Raia (Ed.)The deployment and evaluation of learning algorithms on autonomous vehicles (AV) is expensive, slow, and potentially unsafe. This paper details the F1TENTH autonomous racing platform, an open-source evaluation framework for training, testing, and evaluating autonomous systems. With 1/10th-scale low-cost hardware and multiple virtual environments, F1TENTH enables safe and rapid experimentation of AV algorithms even in laboratory research settings. We present three benchmark tasks and baselines in the set- ting of autonomous racing, demonstrating the flexibility and features of our evaluation environment.more » « less