Magmatic and post-magmatic evolution of post-collisional rare-metal bearing granite: The Neoproterozoic Homrit Akarem Granitic Intrusion, south Eastern Desert of Egypt, Arabian-Nubian Shield
- Award ID(s):
- 1947616
- PAR ID:
- 10320144
- Date Published:
- Journal Name:
- Geochemistry
- Volume:
- 82
- Issue:
- 1
- ISSN:
- 0009-2819
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Textural and compositional variations in titanite constrain the roles of magma mixing and hydrothermal alteration in two plutons in central Utah: the Jurassic Notch Peak and the Oligocene Little Cottonwood stocks. In the Notch Peak intrusion, magmatic titanite grains usually have oscillatory zones combined with BSE-bright sector zones, in some cases surrounding simple unzoned cores. These grains are frequently overprinted by hydrothermal titanite with low concentrations of high field strength elements (HFSE). Magmatic titanite has an average δ18O of 6.0‰ and post-magmatic titanite is 6.2‰, as analyzed by SIMS. Average Zr-in-titanite temperatures are also similar, with 718 °C for magmatic and 711 °C for hydrothermal titanite. These observations indicate simple magmatic growth, followed by hydrothermal alteration by magmatic fluids. Titanite in aplite dikes and sills has lower concentrations of all trace elements except F. Many titanite grains in the aplites have late overgrowths of high-Fe titanite. This high-Fe titanite has δ18O of 6‰ and an average Zr-in-titanite temperature of 718 °C and likely precipitated from a last flush of exsolved magmatic water enriched in Cl and Fe. Titanite in the Little Cottonwood stock typically has distinct patchy cores with rounded and embayed ilmenite inclusions. Mafic enclaves have abundant titanite that is similar in texture and δ18O (5.1‰) to titanite in the host (δ18O = 4.9‰), but it has a slightly higher average Zr-in-titanite temperature (731 vs. 717 °C). The patchy cores in the enclaves have the highest average Zr-in-titanite temperature (759 °C) and distinctive REE patterns. The textural and compositional data indicate that a hotter, more reduced, ilmenite-bearing mafic magma mixed into an oxidized felsic magma, destabilizing existing ilmenite and allowing crystallization of titanite. In the granodiorite and in the enclaves, hydrothermal growth of titanite is evidenced by distinct narrow rims as well as anhedral titanite that grew between sheets of chloritized biotite. Secondary hydrothermal titanite typically has lower concentrations of most HFSE, but is relatively enriched in F, Mg, Mo, and U, and it has higher Nb/Ta and lower Th/U ratios. Post-magmatic titanite also has strikingly different REE patterns than magmatic titanite, including the absence of pronounced Eu anomalies and lower REE abundances. These chemical features are controlled by element solubilities in aqueous fluids. In most cases, hydrothermal titanite has δ18O values similar to magmatic titanite, indicating alteration and recrystallization from exsolved magmatic fluids. The involvement of meteoric water with low δ18O is evident locally; individual spots have δ18O as low as 1.7‰ in the Little Cottonwood stock. Titanite compositions and textures provide important insights into the origins of granitic rocks and can be used to distinguish separate batches of magma, gauge the evolution of magmatic rocks, assess mixing processes, and infer compositions of mixing components. Because titanite also forms hydrothermally, it retains hints about the composition, temperature, and oxygen fugacity of the hydrothermal fluids and reveals details about titanite-forming reactions. However, the Al-in-titanite geobarometer does not yield realistic pressures of crystallization and the use of titanite as a geochronometer is compromised by the development of U-rich hydrothermal titanite.more » « less
-
none (Ed.)Magmatic reservoirs located in the upper crust have been shown to result from the repeated intrusions of new magmas, and spend much of the time as a crystal-rich mush. The geometry of the intrusion of new magmas may greatly affect the thermal and compositional evolution of the reservoir. Despite advances in our understanding of the physical processes that may occur in a magmatic reservoir, the resulting architecture of the composite system remains poorly constrained. Here we performed numerical simulations coupling a computational fluid dynamics and a discrete element method in order to illuminate the geometry and emplacement dynamics of a new intrusion into mush and the relevant physical parameters controlling it. Our results show that the geometry of the intrusion is to first order controlled by the density contrast that exists between the melt phases of the intrusion and resident mush rather than the bulk density contrast as is usually assumed. When the intruded melt is denser than the host melt, the intrusion pounds at the base of the mush and emplaced as a horizontal layer. The occurrence of Rayleigh-Taylor instability leading to the rapid ascent of the intruded material through the mush was observed when the intruded melt was lighter than the host one and was also unrelated to the bulk density contrast. In the absence of density contrasts between the two melt phases, the intrusion may fluidize the host crystal network and slowly ascend through the mush. The effect of the viscosity contrast between the intruded and host materials was found to have a lesser importance on the architecture of intrusions in a mush. Analyzing the eruptive sequence of well documented eruptions involving an intrusion as the trigger shows a good agreement with our modeling results, highlighting the importance of specifically considering granular dynamics when evaluating magmas and mush physical processes.more » « less
An official website of the United States government

