skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges and opportunities in measuring time-resolved force chain evolution in 3D granular materials
Granular materials are found throughout nature and industry: in landslides, avalanches, and river beds, and also in pharmaceutics, food, and mineral processing. Many behaviors of these materials, including the ways in which they pack, deform, flow, and transmit energy, can be fully understood only in the context of inter-particle forces. However, we lack techniques for measuring 3D inter-particle force evolution at subsecond timescales due to technological limitations. Measurements of 3D force chain evolution at subsecond timescales would help validate and extend theories and models that explicitly or implicitly consider force chain dynamics in their predictions. Here, we discuss open challenges associated with force chain evolution on these timescales, challenges limiting such measurements, and possible routes for overcoming these challenges in the coming decade.  more » « less
Award ID(s):
1942096
PAR ID:
10320159
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Papers in Physics
Volume:
14
ISSN:
1852-4249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates computationally the impact of particle size disparity and cohesion on force chain formation in granular media. The granular media considered in this study are bi-disperse systems under uniaxial compression, consisting of spherical, frictionless particles that interact through a modified Hookean model. Force chains in granular media are characterized as networks of particles that meet specific criteria for particle stress and inter-particle forces. The computational setup decouples the effects of particle packing on force chain formations, ensuring an independent assessment of particle size distribution and cohesion on force chain formation. The decoupling is achieved by characterizing particle packing through the radial density function, which enables the identification of systems with both regular and irregular packing. The fraction of particles in the force chains network is used to quantify the presence of the force chains. The findings show that particle size disparity promotes force chain formation in granular media with nearly-regular packing (i.e., an almost-ordered system). However, as particle size disparities grow, it promotes irregular packing (i.e., a disordered systems), leading to fewer force chains carrying larger loads than in ordered systems. Further, it is observed that the increased cohesion in granular systems leads to fewer force chains irrespective of particle size or packing. 
    more » « less
  2. Abstract We compute the forces, torque and rate of work on the companion-core binary due to drag in global simulations of common envelope (CE) evolution for three different companion masses. Our simulations help to delineate regimes when conventional analytic drag force approximations are applicable. During and just prior to the first periastron passage of the in-spiral phase, the drag force is reasonably approximated by conventional analytic theory and peaks at values proportional to the companion mass. Good agreement between global and local 3D “wind tunnel” simulations, including similar net drag force and flow pattern, is obtained for comparable regions of parameter space. However, subsequent to the first periastron passage, the drag force is up to an order of magnitude smaller than theoretical predictions, quasi-steady, and depends only weakly on companion mass. The discrepancy is exacerbated for larger companion mass and when the inter-particle separation reduces to the Bondi-Hoyle-Lyttleton accretion radius, creating a turbulent thermalized region. Greater flow symmetry during this phase leads to near balance of opposing gravitational forces in front of and behind the companion, hence a small net drag. The reduced drag force at late times helps explain why companion-core separations necessary for envelope ejection are not reached by the end of limited duration CE simulations. 
    more » « less
  3. Aguirre, M.A.; Luding, S.; Pugnaloni, L.A.; Soto, R. (Ed.)
    We have developed and employed a 3D particle stress tensor and contact force inference technique that employs synchrotron X-ray tomography and diffraction with an optimization algorithm. We have used this technique to study stress and force heterogeneity, particle fracture mechanics, contact-level energy dissipation, and the origin of wave phenomena in 3D granular media for the past five years. Here, we review the technique, describe experimental and numerical sources of uncertainty, and use experimental data and discrete element method simulations to study the method’s accuracy. We find that inferred forces in the strong force network of a 3D granular material are accurately determined even in the presence of noisy stress measurements. 
    more » « less
  4. The considerable interest in two-dimensional (2D) materials and complex molecular topologies calls for a robust experimental system for single-molecule studies. In this work, we study the equilibrium properties and deformation response of a complex DNA structure called a kinetoplast, a 2D network of thousands of linked rings akin to molecular chainmail. Examined in good solvent conditions, kinetoplasts appear as a wrinkled hemispherical sheet. The conformation of each kinetoplast is dictated by its network topology, giving it a unique shape, which undergoes small-amplitude thermal fluctuations at subsecond timescales, with a wide separation between fluctuation and diffusion timescales. They deform elastically when weakly confined and swell to their equilibrium dimensions when the confinement is released. We hope that, in the same way that linear DNA became a canonical model system on the first investigations of its polymer-like behavior, kinetoplasts can serve that role for 2D and catenated polymer systems. 
    more » « less
  5. We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress–stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations exhibit a pinch-point singularity in Fourier space. This leads to long-range correlations and strong anisotropy in real space, which are at the origin of force-chains in granular solids. Our analysis of the model particulate gels at low particle volume fractions demonstrates that stress–stress correlations in these soft materials have characteristics very similar to those in granular solids and can be used to identify force chains. We show that the stress–stress correlations can distinguish floppy from rigid gel networks and that the intensity patterns reflect changes in shear moduli and network topology, due to the emergence of rigid structures during solidification. 
    more » « less