Sudeepa Roy and Jun Yang
(Ed.)
Data we encounter in the real-world such as printed menus, business documents, and nutrition labels, are often ad-hoc. Valuable insights can be gathered from this data when combined with additional information. Recent advances in computer vision and augmented reality have made it possible to understand and enrich such data. Joining real-world data with remote data stores and surfacing those enhanced results in place, within an augmented reality interface can lead to better and more informed decision-making capabilities. However, building end-user applications that perform these joins with minimal human effort is not straightforward. It requires a diverse set of expertise, including machine learning, database systems, computer vision, and data visualization. To address this complexity, we present Quill – a framework to develop end-to-end applications that model augmented reality applications as a join between real- world data and remote data stores. Using an intuitive domain-specific language, Quill accelerates the development of end-user applications that join real-world data with remote data stores. Through experiments on applications from multiple different domains, we show that Quill not only expedites the process of development, but also allows developers to build applications that are more performant than those built using standard developer tools, thanks to the ability to optimize declarative specifications. We also perform a user-focused study to investigate how easy (or difficult) it is to use Quill for developing augmented reality applications than other existing tools. Our results show that Quill allows developers to build and deploy applications with a lower technical background than building the same application using existing developer tools.
more »
« less
An official website of the United States government

