skip to main content


Title: PP12B-05 and CO2 14C - Constraints on the Deglacial Release of Geologic Carbon Using Atmospheric Records
While a reinvigoration of ocean circulation and CO 2 marine geologic carbon release over the last 20,000 years. Much of this evidence points to outgassing is the leading explanation for atmospheric CO rise since the Last Glacial Maximum (LGM), there is also evidence of regions of the mid-depth Pacific Ocean, where multiple radiocarbon (1 4 C) records show anomalously low 14 C/C values, potentially caused by the addition of carbon [1,2]. To better constrain this geologic carbon release hypothesis, we aim to place 14 C-free geologic an upper bound limit on the amount of carbon that may have been added, in addition to the geochemical pathway of that carbon. To do so, we numerical invert a carbon cycle model based on observational atmospheric CO 2 and 14 C records. Given these observational constraints, we use data assimilation techniques and an optimization algorithm to calculate the rate of carbon addition and its alkalinity-to-carbon ratio (R ) over the last 20,000 A/C years. Using the modeled planetary radiocarbon budget calculated in Hain et al. [3], we find observations allow for only ~300 Pg of carbon to be added, as a majority of the deglacial atmospheric 14 C decline is already explained by magnetic field strength changes and ocean circulation changes [3]. However, when we adjust the initial state of the model by increasing C by 75‰ to match the observational C records, we find that observations 14 14 allow for ~3500 Pg of carbon addition with an average R of ~1.4. A/C These results allow for the possibility of a large release of 14C-free geologic carbon, which could provide local and regional 14C anomalies, as the records have in the Pacific [1,2]. As this geological carbon was added with a RA/C of ~1.4, these results also imply that 14C evidence for significant geologic carbon release since the LGM may not be taken as contributing to deglacial CO2 rise, unless there is evidence for significant local acidification and corrosion of seafloor sediments. If the geologic carbon cycle is indeed more dynamic than previously thought, we may also need to rethink the approach to estimate the land/ocean carbon repartitioning from the deglacial stable carbon isotope budget. [1] Rafter et al. (2019), GRL 46(23), 13950–13960. [2] Ronge et al. (2016), Nature Communications 7(1), 11487. [3] Hain et al. (2014), EPSL 394, 198–208.  more » « less
Award ID(s):
2032340
NSF-PAR ID:
10320212
Author(s) / Creator(s):
Date Published:
Journal Name:
AGU Fall Meeting
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Identifying processes within the Earth System that have modulated atmospheric pCO2during each glacial cycle of the late Pleistocene stands as one of the grand challenges in climate science. The growing array of surface ocean pH estimates from the boron isotope proxy across the last glacial termination may reveal regions of the ocean that influenced the timing and magnitude of pCO2rise. Here we present two new boron isotope records from the subtropical‐subpolar transition zone of the Southwest Pacific that span the last 20 kyr, as well as new radiocarbon data from the same cores. The new data suggest this region was a source of carbon to the atmosphere rather than a moderate sink as it is today. Significantly higher outgassing is observed between ~16.5 and 14 kyr BP, associated with increasing δ13C and [CO3]2−at depth, suggesting loss of carbon from the intermediate ocean to the atmosphere. We use these new boron isotope records together with existing records to build a composite pH/pCO2curve for the surface oceans. The pH disequilibrium/CO2outgassing was widespread throughout the last deglaciation, likely explained by upwelling of CO2from the deep/intermediate ocean. During the Holocene, a smaller outgassing peak is observed at a time of relatively stable atmospheric CO2, which may be explained by regrowth of the terrestrial biosphere countering ocean CO2release. Our stack is likely biased toward upwelling/CO2source regions. Nevertheless, the composite pCO2curve provides robust evidence that various parts of the ocean were releasing CO2to the atmosphere over the last 25 kyr.

     
    more » « less
  2. Abstract

    All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.

     
    more » « less
  3. Abstract

    The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2levels. We document the enhanced storage of respired CO2during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2in the deep ocean is a ubiquitous feature of late‐Pleistocene ice ages.

     
    more » « less
  4. null (Ed.)
    ABSTRACT There is a growing database of radiocarbon ( 14 C) reconstructions from biogenic carbonate taken from marine sediment cores being used to investigate changing ocean circulation and carbon cycling at the end of the last great ice age. Reported here are 14 C results from a marine core taken in the Makassar Straits of the western equatorial Pacific that was intended to test whether there was evidence of geologic carbon release to the ocean during the glacial termination. A thorough investigation of planktic and benthic 14 C ages with stable isotopes and CT-scans revealed extensive burrowing in the upper 2 m of the core that displaced younger sediments downward by more than half a meter into the glacial section of the core. The vertical displacement is evident in both planktic and benthic fossils. However, the extent of displacement and the stratigraphic disturbance became evident only after multiple measurements of different species and genera. A CT-scan prior to sampling would be an effective screening tool to avoid sampling problem cores such as this. 
    more » « less
  5. Over the last few million years, Africa’s climate exhibits a long-term drying trend with episodes of high climate variability coinciding with the intensification of glacial-interglacial cycles. Of particular interest, is a shift to drier and more variable conditions noted in the Olorgesailie Formation (Kenya) between 500 and 300 thousand years ago (ka) in which Potts et al. (2018) observed a turnover of ~85% of large-body mammalian fauna to smaller-body related taxa and suggested that the shift was an evolutionary response to better adapt to the changing climate. However, an erosional gap in the Olorgesailie record during this time interval means that the cause of this faunal shift is still an outstanding question. To understand East African climate variability during the Mid-Pleistocene, we analyze Lake Malawi drill core MAL 05–1 (~11ºS, 34ºE) to investigate if a specific climatic event stands out as a possible driver of the dramatic change observed in the East African mammal community. We use organic geochemical proxies including branched glycerol diaklyl glycerol tetraethers (brGDGTs; the MBT′5ME index) andleaf wax carbon and deuterium isotopes to develop high-resolution temperature, vegetation, and precipitation records, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~9°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~330 ka. Preliminary leaf wax deuterium isotopic values show an enrichment that coincides with deglacial warmings suggesting a shift to more arid conditions during interglacial than in glacial periods. This change from a cold/wet glacial to a warm/dry interglacial contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa which transitioned to a warm/wet Holocene. Leaf wax carbon isotopes are presently being analyzed to understand past shifts in C3 vs C4 vegetation type, which can be related to climatic conditions. We propose that the major warming and drying during Termination V in East Africa represents a significant abrupt change in the climate of eastern Africa and was a likely driver of the major faunal turnover noted in the region. 
    more » « less