skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PP33D-1547 Characterizing the spatial distribution and chemistry of geologic carbon input to the Eastern Tropical North Pacific before and after the last ice age
The observation of extremely low radiocarbon content / old radiocarbon ages (>4000 years old) in the intermediate-depth ocean during the last ice age draws attention to our incomplete understanding of ocean carbon cycling. For example, glacial-interglacial seawater 14C anomalies near the Gulf of California have been explained by both the advection from a 14C-depleted abyssal source and local geologic carbon flux. To provide insight to this the origin of the seawater 14C anomalies, we have produced several new records of glacial-interglacial intermediate water (i.e., 14C, δ11B, δ18O, and δ13C) in waters that are “upstream” and “downstream” of the Gulf of California. These observations plus geochemical modeling allow us to: (1) Answer whether the old seawater 14C ages are advected or produced locally; (2) Identify the approximate chemical make-up of this carbon; and (3) Consider the role of known sedimentary processes in this carbon flux to the ocean. (Note that several sites have age model controls based on terrestrial plant 14C ages, providing more confidence in our results.) Our new measurements and modeling indicate that the well-established >4000-year-old seawater 14C anomalies observed near known seafloor volcanism in the Gulf of California are not present “upstream,” indicating that this carbon flux results from a “local” geologic carbon. Furthermore, based on our new benthic foraminifera δ11B measurements, this local carbon Blux does not appear to affect seawater pH. Finally, we suggest several potential geologic carbon source(s) that could explain the anomalously old seawater 14C ages, the relatively unremarkable changes in seawater δ13C, and the essentially negligible change in seawater pH.  more » « less
Award ID(s):
2032340 2015647
PAR ID:
10507252
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Transactions American Geophysical Union
ISSN:
2379-6723
Format(s):
Medium: X
Location:
San Francisco, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. While a reinvigoration of ocean circulation and CO 2 marine geologic carbon release over the last 20,000 years. Much of this evidence points to outgassing is the leading explanation for atmospheric CO rise since the Last Glacial Maximum (LGM), there is also evidence of regions of the mid-depth Pacific Ocean, where multiple radiocarbon (1 4 C) records show anomalously low 14 C/C values, potentially caused by the addition of carbon [1,2]. To better constrain this geologic carbon release hypothesis, we aim to place 14 C-free geologic an upper bound limit on the amount of carbon that may have been added, in addition to the geochemical pathway of that carbon. To do so, we numerical invert a carbon cycle model based on observational atmospheric CO 2 and 14 C records. Given these observational constraints, we use data assimilation techniques and an optimization algorithm to calculate the rate of carbon addition and its alkalinity-to-carbon ratio (R ) over the last 20,000 A/C years. Using the modeled planetary radiocarbon budget calculated in Hain et al. [3], we find observations allow for only ~300 Pg of carbon to be added, as a majority of the deglacial atmospheric 14 C decline is already explained by magnetic field strength changes and ocean circulation changes [3]. However, when we adjust the initial state of the model by increasing C by 75‰ to match the observational C records, we find that observations 14 14 allow for ~3500 Pg of carbon addition with an average R of ~1.4. A/C These results allow for the possibility of a large release of 14C-free geologic carbon, which could provide local and regional 14C anomalies, as the records have in the Pacific [1,2]. As this geological carbon was added with a RA/C of ~1.4, these results also imply that 14C evidence for significant geologic carbon release since the LGM may not be taken as contributing to deglacial CO2 rise, unless there is evidence for significant local acidification and corrosion of seafloor sediments. If the geologic carbon cycle is indeed more dynamic than previously thought, we may also need to rethink the approach to estimate the land/ocean carbon repartitioning from the deglacial stable carbon isotope budget. [1] Rafter et al. (2019), GRL 46(23), 13950–13960. [2] Ronge et al. (2016), Nature Communications 7(1), 11487. [3] Hain et al. (2014), EPSL 394, 198–208. 
    more » « less
  2. The burial and oxidation of organic carbon (OC) partially regulates global atmospheric CO2 and therefore climate on both modern and geologic timescales. In order to understand fluxes in the carbon cycle, it is imperative to understand the chemical composition of OC, and in turn the fate of different OC sources and sinks. Bulk radiocarbon (14C) techniques are often used to understand environmental OC, but this method only reflects the average 14C age of all contributing C sources in a sample, providing no information on the composition of the OC and obscuring natural heterogeneity in OC ages. 
    more » « less
  3. null (Ed.)
    ABSTRACT There is a growing database of radiocarbon ( 14 C) reconstructions from biogenic carbonate taken from marine sediment cores being used to investigate changing ocean circulation and carbon cycling at the end of the last great ice age. Reported here are 14 C results from a marine core taken in the Makassar Straits of the western equatorial Pacific that was intended to test whether there was evidence of geologic carbon release to the ocean during the glacial termination. A thorough investigation of planktic and benthic 14 C ages with stable isotopes and CT-scans revealed extensive burrowing in the upper 2 m of the core that displaced younger sediments downward by more than half a meter into the glacial section of the core. The vertical displacement is evident in both planktic and benthic fossils. However, the extent of displacement and the stratigraphic disturbance became evident only after multiple measurements of different species and genera. A CT-scan prior to sampling would be an effective screening tool to avoid sampling problem cores such as this. 
    more » « less
  4. Abstract. The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of low benthic foraminiferal abundances, challenges with constructing independent sediment core age models, and an apparent muted amplitude of Arctic δ18Ob variability compared to open-ocean records. Here we evaluate the controls on Arctic δ18Ob by using ostracode Mg/Ca paleothermometry to generate a composite record of the δ18O of seawater (δ18Osw) from 12 sediment cores in the intermediate to deep Arctic Ocean (700–2700 m) that covers the last 600 kyr based on biostratigraphy and orbitally tuned age models. Results show that Arctic δ18Ob was generally higher than open-ocean δ18Ob during interglacials but was generally equivalent to global reference records during glacial periods. The reduced glacial–interglacial Arctic δ18Ob range resulted in part from the opposing effect of temperature, with intermediate to deep Arctic warming during glacials counteracting the whole-ocean δ18Osw increase from expanded terrestrial ice sheets. After removing the temperature effect from δ18Ob, we find that the intermediate to deep Arctic experienced large (≥1 ‰) variations in local δ18Osw, with generally higher local δ18Osw during interglacials and lower δ18Osw during glacials. Both the magnitude and timing of low local δ18Osw intervals are inconsistent with the recent proposal of freshwater intervals in the Arctic Ocean during past glaciations. Instead, we suggest that lower local δ18Osw in the intermediate to deep Arctic Ocean during glaciations reflected weaker upper-ocean stratification and more efficient transport of low-δ18Osw Arctic surface waters to depth by mixing and/or brine rejection. 
    more » « less
  5. Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed by melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue. 
    more » « less