skip to main content

This content will become publicly available on October 28, 2022

Title: Service system design of video conferencing visits with nurse assistance
Despite providing convenience and reducing the travel burden of patients, Video-Conferencing (VC) clinical visits have not enjoyed wide uptake by patients and care providers. It is desired that the medical problems addressed by VC visits can match a face-to-face encounter in scope and quality. Subsequently, VC visits with nurse assistance are emerging; however, the scalable and financially sustainable of such services are unclear. Therefore, we explore the implementability of VC visits with nursing services using a game-theoretic model, and investigate the impact of different pricing schemes (discriminative pricing based on patient characteristics vs. non-discriminative) on patients’ care choices between VC and in-person visits. Our results shed light on the “artificial congestion” created by a profit-driven medical institution that hurts patient welfare, and subsequently identify the conditions where the interest of the social planner and the medical institution are aligned. Our results highlight that, compared to a uniform price of VC visits which seems fair, discriminative pricing can be more beneficial for patients and the medical institution alike. This heightens the importance of insurance coverage of telehealth-related services to promote the adoption of telehealth by patients and care providers, and ultimately, improving care access and patient outcomes.
Authors:
; ;
Award ID(s):
2027677
Publication Date:
NSF-PAR ID:
10320213
Journal Name:
IISE transactions
ISSN:
2472-5854
Sponsoring Org:
National Science Foundation
More Like this
  1. Hospitalization of patients with chronic diseases poses a significant burden on the healthcare system. Frequent hospitalization can be partially attributed to the failure of healthcare providers to engage effectively with their patients. Recently, patient portals have become popular as information technology (IT) platforms that provide patients with online access to their medical records and help them engage effectively with healthcare providers. Despite the popularity of these portals, there is a paucity of research on the impact of patient–provider engagement on patients’ health outcomes. Drawing on the theory of effective use, we examine the association between portal use and the incidencemore »of subsequent patient hospitalizations, based on a unique, longitudinal dataset of patients’ portal use, across a 12-year period at a large academic medical center in North Texas. Our results indicate that portal use is associated with improvements in patient health outcomes along multiple dimensions, including the frequency of hospital and emergency visits, readmission risk, and length of stay. This is one of the first studies to conduct a large-scale, longitudinal analysis of a health IT system and its effect on individual level health outcomes. Our results highlight the need for technologies that can improve patient–provider engagement and improve overall health outcomes for chronic disease management.« less
  2. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal healthmore »data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD will be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so.« less
  3. Patient-generated health data (PGHD), created and captured from patients via wearable devices and mobile apps, are proliferating outside of clinical settings. Examples include sleep tracking, fitness trackers, continuous glucose monitors, and RFID-enabled implants, with many additional biometric or health surveillance applications in development or envisioned. These data are included in growing stockpiles of personal health data being mined for insight via big data analytics and artificial intelligence/deep learning technologies. Governing these data resources to facilitate patient care and health research while preserving individual privacy and autonomy will be challenging, as PGHD are the least regulated domains of digitalized personal healthmore »data (U.S. Department of Health and Human Services, 2018). When patients themselves collect digitalized PGHD using “apps” provided by technology firms, these data fall outside of conventional health data regulation, such as HIPAA. Instead, PGHD are maintained primarily on the information technology infrastructure of vendors, and data are governed under the IT firm’s own privacy policies and within the firm’s intellectual property rights. Dominant narratives position these highly personal data as valuable resources to transform healthcare, stimulate innovation in medical research, and engage individuals in their health and healthcare. However, ensuring privacy, security, and equity of benefits from PGHD will be challenging. PGHD can be aggregated and, despite putative “deidentification,” be linked with other health, economic, and social data for predictive analytics. As large tech companies enter the healthcare sector (e.g., Google Health is partnering with Ascension Health to analyze the PHI of millions of people across 21 U.S. states), the lack of harmonization between regulatory regimes may render existing safeguards to preserve patient privacy and control over their PHI ineffective. While healthcare providers are bound to adhere to health privacy laws, Big Tech comes under more relaxed regulatory regimes that will facilitate monetizing PGHD. We explore three existing data protection regimes relevant to PGHD in the United States that are currently in tension with one another: federal and state health-sector laws, data use and reuse for research and innovation, and industry self-regulation by large tech companies We then identify three types of structures (organizational, regulatory, technological/algorithmic), which synergistically could help enact needed regulatory oversight while limiting the friction and economic costs of regulation. This analysis provides a starting point for further discussions and negotiations among stakeholders and regulators to do so.« less
  4. Patients staying in the Intensive Care Unit (ICU) have a severely disrupted circadian rhythm. Due to patients' critical medical condition, ICU physicians and nurses have to provide round-the-clock clinical care, further disrupting patients' circadian rhythm. Mistimed family visits during rest-time can also disrupt patients' circadian rhythm. Currently, such effects are only reported based on hospital visitation policies rather than the actual number of visitors and care providers in the room. To quantify visitation disruptions, we used a deep Mask R-CNN model, a deep learning framework for object instance segmentation to detect and quantify the number of individuals in the ICUmore »unit. This study represents the first effort to automatically quantify visitations in an ICU room, which could have implications in terms of policy adjustment, as well as circadian rhythm investigation. Our model achieved precision of 0.97 and recall of 0.67, with F1 score of 0.79 for detecting disruptions in the ICU units.« less
  5. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns whenmore »sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient.« less