- PAR ID:
- 10320543
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 926
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E −2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10 −12 TeV cm −2 s −1 at 90% confidence level. This upper limit is approximately 1% of IceCube’s diffuse muon–neutrino flux measurement.more » « less
-
Abstract Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳10 14 M ⊙ and redshifts between 0.01 and ∼1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳10 14 M ⊙ ) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E −2.5 power-law spectrum.more » « less
-
Abstract IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events’ error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3
σ , which confirms previous IceCube studies. When correcting for 122 test positions, the globalp -value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 × 10−15(TeV cm2s)−1at 90% confidence assuming anE −2spectrum. This corresponds to 4.5% of IceCube’s astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission. -
Abstract Active galactic nuclei (AGN) are prime candidate sources of the high-energy, astrophysical neutrinos detected by IceCube. This is demonstrated by the real-time multimessenger detection of the blazar TXS 0506+056 and the recent evidence of neutrino emission from NGC 1068 from a separate time-averaged study. However, the production mechanism of the astrophysical neutrinos in AGN is not well established, which can be resolved via correlation studies with photon observations. For neutrinos produced due to photohadronic interactions in AGN, in addition to a correlation of neutrinos with high-energy photons, there would also be a correlation of neutrinos with photons emitted at radio wavelengths. In this work, we perform an in-depth stacking study of the correlation between 15 GHz radio observations of AGN reported in the MOJAVE XV catalog, and 10 yr of neutrino data from IceCube. We also use a time-dependent approach, which improves the statistical power of the stacking analysis. No significant correlation was found for both analyses, and upper limits are reported. When compared to the IceCube diffuse flux, at 100 TeV and for a spectral index of 2.5, the upper limits derived are ∼3% and ∼9% for the time-averaged and time-dependent cases, respectively.
-
Abstract We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ϕ @ 100 TeV ν μ + ν ¯ μ = 1.44 − 0.26 + 0.25 × 10 − 18 GeV − 1 cm − 2 s − 1 sr − 1 and a spectral index γ SPL = 2.37 − 0.09 + 0.09 , constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.more » « less