Cyberbullying is a well-known social issue, and it is escalating day by day. Due to the vigorous development of the internet, social media provide many different ways for the user to express their opinions and exchange information. Cyberbullying occurs on social media using text messages, comments, sharing images and GIFs or stickers, and audio and video. Much research has been done to detect cyberbullying on textual data; some are available for images. Very few studies are available to detect cyberbullying on GIFs/stickers. We collect a GIF dataset from Twitter and Applied a deep learning model to detect cyberbullying from the dataset. Firstly, we extracted hashtags related to cyberbullying using Twitter. We used these hashtags to download GIF file using publicly available API GIPHY. We collected over 4100 GIFs including cyberbullying and non-cyberbullying. we applied deep learning pre-trained model VGG16 for the detection of the cyberbullying. The deep learning model achieved the accuracy of 97%. Our work provides the GIF dataset for researchers working in this area.
more »
« less
SinGAN-GIF: Learning a Generative Video Model from a Single GIF
We propose SinGAN-GIF, an extension of the image-based SinGAN [27] to GIFs or short video snippets. Our method learns the distribution of both the image patches in the GIF as well as their motion patterns. We do so by using a pyramid of 3D and 2D convolutional networks to model temporal information while reducing model parameters and training time, along with an image and a video discriminator. SinGAN-GIF can generate similar looking video samples for natural scenes at different spatial resolutions or temporal frame rates, and can be extended to other video applications like video editing, super resolution, and motion transfer. The project page, with supplementary video results, is: https://rajat95.github. io/singan-gif/
more »
« less
- Award ID(s):
- 1748387
- PAR ID:
- 10320561
- Date Published:
- Journal Name:
- Winter Conference on Applications of Computer Vision (WACV)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An object’s interior material properties, while invisible to the human eye, determine motion observed on its surface. We propose an approach that esti- mates heterogeneous material properties of an object directly from a monoc- ular video of its surface vibrations. Specifically, we estimate Young’s modulus and density throughout a 3D object with known geometry. Knowledge of how these values change across the object is useful for characterizing defects and simulating how the object will interact with different environments. Traditional non-destructive testing approaches, which generally estimate homogenized material properties or the presence of defects, are expensive and use specialized instruments. We propose an approach that leverages monocular video to (1) measure an object’s sub-pixel motion and decompose this motion into image-space modes, and (2) directly infer spatially-varying Young’s modulus and density values from the observed image-space modes. On both simulated and real videos, we demonstrate that our approach is able to image material properties simply by analyzing surface motion. In particular, our method allows us to identify unseen defects on a 2D drum head from real, high-speed video.more » « less
-
Online lecture videos are increasingly important e-learning materials for students. Automated content extraction from lecture videos facilitates information retrieval applications that improve access to the lecture material. A significant number of lecture videos include the speaker in the image. Speakers perform various semantically meaningful actions during the process of teaching. Among all the movements of the speaker, key actions such as writing or erasing potentially indicate important features directly related to the lecture content. In this paper, we present a methodology for lecture video content extraction using the speaker actions. Each lecture video is divided into small temporal units called action segments. Using a pose estimator, body and hands skeleton data are extracted and used to compute motion-based features describing each action segment. Then, the dominant speaker action of each of these segments is classified using Random forests and the motion-based features. With the temporal and spatial range of these actions, we implement an alternative way to draw key-frames of handwritten content from the video. In addition, for our fixed camera videos, we also use the skeleton data to compute a mask of the speaker writing locations for the subtraction of the background noise from the binarized key-frames. Our method has been tested on a publicly available lecture video dataset, and it shows reasonable recall and precision results, with a very good compression ratio which is better than previous methods based on content analysis.more » « less
-
Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that an energy-based spatial-temporal generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-temporal filters to capture spatial-temporal patterns of different scales. The model can be learned from the training video sequences by an “analysis by synthesis” learning algorithm that iterates the following two steps. Step 1 synthesizes video sequences from the currently learned model. Step 2 then updates the model parameters based on the difference between the synthesized video sequences and the observed training sequences. We show that the learning algorithm can synthesize realistic dynamic patterns. We also show that it is possible to learn the model from incomplete training sequences with either occluded pixels or missing frames, so that model learning and pattern completion can be accomplished simultaneously.more » « less
-
Abstract—Accurately capturing dynamic scenes with wideranging motion and light intensity is crucial for many vision applications. However, acquiring high-speed high dynamic range (HDR) video is challenging because the camera’s frame rate restricts its dynamic range. Existing methods sacrifice speed to acquire multi-exposure frames. Yet, misaligned motion in these frames can still pose complications for HDR fusion algorithms, resulting in artifacts. Instead of frame-based exposures, we sample the videos using individual pixels at varying exposures and phase offsets. Implemented on a monochrome pixel-wise programmable image sensor, our sampling pattern captures fast motion at a high dynamic range. We then transform pixel-wise outputs into an HDR video using end-to-end learned weights from deep neural networks, achieving high spatiotemporal resolution with minimized motion blurring. We demonstrate aliasing-free HDR video acquisition at 1000 FPS, resolving fast motion under low-light conditions and against bright backgrounds — both challenging conditions for conventional cameras. By combining the versatility of pixel-wise sampling patterns with the strength of deep neural networks at decoding complex scenes, our method greatly enhances the vision system’s adaptability and performance in dynamic conditions. Index Terms—High-dynamic-range video, high-speed imaging, CMOS image sensors, programmable sensors, deep learning, convolutional neural networks.more » « less
An official website of the United States government

