skip to main content

Title: Control Variates for Slate Off-Policy Evaluation
We study the problem of off-policy evaluation from batched contextual bandit data with multidimensional actions, often termed slates. The problem is common to recommender systems and user-interface optimization, and it is particularly challenging because of the combinatorially-sized action space. Swaminathan et al. (2017) have proposed the pseudoinverse (PI) estimator under the assumption that the conditional mean rewards are additive in actions. Using control variates, we consider a large class of unbiased estimators that includes as specific cases the PI estimator and (asymptotically) its self-normalized variant. By optimizing over this class, we obtain new estimators with risk improvement guarantees over both the PI and the self-normalized PI estimators. Experiments with real-world recommender data as well as synthetic data validate these improvements in practice.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The paper is concerned with inference for linear models with fixed regressors and weakly dependent stationary time series errors. Theoretically, we obtain asymptotic normality for the M-estimator of the regression parameter under mild conditions and establish a uniform Bahadur representation for recursive M-estimators. Methodologically, we extend the recently proposed self-normalized approach of Shao from stationary time series to the regression set-up, where the sequence of response variables is typically non-stationary in mean. Since the limiting distribution of the self-normalized statistic depends on the design matrix and its corresponding critical values are case dependent, we develop a simulation-based approach to approximate the critical values consistently. Through a simulation study, we demonstrate favourable finite sample performance of our method in comparison with a block-bootstrap-based approach. Empirical illustrations using two real data sets are also provided.

    more » « less
  2. The Rasch model is widely used for item response analysis in applications ranging from recommender systems to psychology, education, and finance. While a number of estimators have been proposed for the Rasch model over the last decades, the associated analytical performance guarantees are mostly asymptotic. This paper provides a framework that relies on a novel linear minimum mean-squared error (L-MMSE) estimator which enables an exact, nonasymptotic, and closed-form analysis of the parameter estimation error under the Rasch model. The proposed framework provides guidelines on the number of items and responses required to attain low estimation errors in tests or surveys. We furthermore demonstrate its efficacy on a number of real-world collaborative filtering datasets, which reveals that the proposed L-MMSE estimator performs on par with state-of-the-art nonlinear estimators in terms of predictive performance. 
    more » « less
  3. null (Ed.)
    Abstract Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from $d$-dimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth and median estimators and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near optimal when data are i.i.d. and when the fraction of ‘low-noise’ distributions is as small as $\varOmega \left (\frac{d \log n}{n}\right )$, where $n$ is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points. 
    more » « less
  4. The ability to perform offline A/B-testing and off-policy learning using logged contextual bandit feedback is highly desirable in a broad range of applications, including recommender systems, search engines, ad placement, and personalized health care. Both offline A/B-testing and offpolicy learning require a counterfactual estimator that evaluates how some new policy would have performed, if it had been used instead of the logging policy. In this paper, we present and analyze a family of counterfactual estimators which subsumes most estimators proposed to date. Most importantly, this analysis identifies a new estimator – called Continuous Adaptive Blending (CAB) – which enjoys many advantageous theoretical and practical properties. In particular, it can be substantially less biased than clipped Inverse Propensity Score (IPS) weighting and the Direct Method, and it can have less variance than Doubly Robust and IPS estimators. In addition, it is subdifferentiable such that it can be used for learning, unlike the SWITCH estimator. Experimental results show that CAB provides excellent evaluation accuracy and outperforms other counterfactual estimators in terms of learning performance. 
    more » « less
  5. null (Ed.)
    Abstract We explore the power of the hybrid model of differential privacy (DP), in which some users desire the guarantees of the local model of DP and others are content with receiving the trusted-curator model guarantees. In particular, we study the utility of hybrid model estimators that compute the mean of arbitrary realvalued distributions with bounded support. When the curator knows the distribution’s variance, we design a hybrid estimator that, for realistic datasets and parameter settings, achieves a constant factor improvement over natural baselines.We then analytically characterize how the estimator’s utility is parameterized by the problem setting and parameter choices. When the distribution’s variance is unknown, we design a heuristic hybrid estimator and analyze how it compares to the baselines. We find that it often performs better than the baselines, and sometimes almost as well as the known-variance estimator. We then answer the question of how our estimator’s utility is affected when users’ data are not drawn from the same distribution, but rather from distributions dependent on their trust model preference. Concretely, we examine the implications of the two groups’ distributions diverging and show that in some cases, our estimators maintain fairly high utility. We then demonstrate how our hybrid estimator can be incorporated as a sub-component in more complex, higher-dimensional applications. Finally, we propose a new privacy amplification notion for the hybrid model that emerges due to interaction between the groups, and derive corresponding amplification results for our hybrid estimators. 
    more » « less