skip to main content


Search for: All records

Award ID contains: 1716657

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We investigate the role of dense environments in suppressing star formation by studying $\rm \log _{10}(M_\star /M_\odot) \gt 9.7$ star-forming galaxies in nine clusters from the Local Cluster Survey (0.0137 < z < 0.0433) and a large comparison field sample drawn from the Sloan Digital Sky Survey. We compare the star formation rate (SFR) with stellar mass relation as a function of environment and morphology. After carefully controlling for mass, we find that in all environments, the degree of SFR suppression increases with increasing bulge-to-total (B/T) ratio. In addition, the SFRs of cluster and infall galaxies at a fixed mass are more suppressed than their field counterparts at all values of B/T. These results suggest a quenching mechanism that is linked to bulge growth that operates in all environments and an additional mechanism that further reduces the SFRs of galaxies in dense environments. We limit the sample to B/T ≤ 0.3 galaxies to control for the trends with morphology and find that the excess population of cluster galaxies with suppressed SFRs persists. We model the time-scale associated with the decline of SFRs in dense environments and find that the observed SFRs of the cluster core galaxies are consistent with a range of models including a mechanism that acts slowly and continuously over a long (2–5 Gyr) time-scale, and a more rapid (<1 Gyr) quenching event that occurs after a delay period of 1–6 Gyr. Quenching may therefore start immediately after galaxies enter clusters.

     
    more » « less
  2. Abstract Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h –1 Mpc filaments, tend to be thin (<1 h –1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-type galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties. 
    more » « less
  3. It is now well established that galaxies have different morphologies, gas contents, and star formation rates (SFR) in dense environments like galaxy clusters. The impact of environmental density extends to several virial radii, and galaxies appear to be pre-processed in filaments and groups before falling into the cluster. Our goal is to quantify this pre-processing in terms of gas content and SFR, as a function of density in cosmic filaments. We have observed the two first CO transitions in 163 galaxies with the IRAM-30 m telescope, and added 82 more measurements from the literature, thus forming a sample of 245 galaxies in the filaments around the Virgo cluster. We gathered HI-21cm measurements from the literature and observed 69 galaxies with the Nançay telescope to complete our sample. We compare our filament galaxies with comparable samples from the Virgo cluster and with the isolated galaxies of the AMIGA sample. We find a clear progression from field galaxies to filament and cluster galaxies for decreasing SFR, increasing fraction of galaxies in the quenching phase, an increasing proportion of early-type galaxies, and decreasing gas content. Galaxies in the quenching phase, defined as having a SFR below one-third of that of the main sequence (MS), are only between 0% and 20% in the isolated sample, according to local galaxy density, while they are 20%–60% in the filaments and 30%–80% in the Virgo cluster. Processes that lead to star formation quenching are already at play in filaments; they depend mostly on the local galaxy density, while the distance to the filament spine is a secondary parameter. While the HI-to-stellar-mass ratio decreases with local density by an order of magnitude in the filaments, and two orders of magnitude in the Virgo cluster with respect to the field, the decrease is much less for the H 2 -to-stellar-mass ratio. As the environmental density increases, the gas depletion time decreases, because the gas content decreases faster than the SFR. This suggests that gas depletion precedes star formation quenching. 
    more » « less