Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Fixed-point decimal operations in databases with arbitrary-precision arithmetic refer to the ability to store and operate decimal fraction numbers with an arbitrary length of digits. This type of operation has become a requirement for many applications, including scientific databases, financial data processing, geometric data processing, and cryptography. However, the state-of-the-art fixed-point decimal technology either provides high performance for low-precision operations or supports arbitrary-precision arithmetic operations at low performance. In this paper, we present a design and implementation of a framework called UltraPrecise which supports arbitraryprecision arithmetic for databases on GPU, aiming to gain high performance for arbitrary-precision arithmetic operations. We build our framework based on the just-in-time compilation technique and optimize its performance via data representation design, PTX acceleration, and expression scheduling. UltraPrecise achieves comparable performance to other high-performance databases for low-precision arithmetic operations. For highprecision, we show that UltraPrecise consistently outperforms existing databases by two orders of magnitude, including workloads of RSA encryption and trigonometric function approximation.more » « less
- 
            The tree edit distance (TED) has been found in a wide spectrum of applications in artificial intelligence, bioinformatics, and other areas, which serves as a metric to quantify the dissimilarity between two trees. As applications continue to scale in data size, with a growing demand for fast response time, TED has become even more increasingly data- and computing-intensive. Over the years, researchers have made dedicated efforts to improve sequential TED algorithms by reducing their high complexity. However, achieving efficient parallel TED computation in both algorithm and implementation is challenging due to its dynamic programming nature involving non-trivial issues of data dependency, runtime execution pattern changes, and optimal utilization of limited parallel resources. Having comprehensively investigated the bottlenecks in the existing parallel TED algorithms, we develop a massive parallel computation framework for TED and its implementation on GPU, which is called X-TED. For a given TED computation, X-TED applies a fast preprocessing algorithm to identify dependency relationships among millions of dynamic programming tables. Subsequently, it adopts a dynamic parallel strategy to handle various processing stages, aiming to best utilize GPU cores and the limited device memory in an adaptive and automatic way. Our intensive experimental results demonstrate that X-TED surpasses all existing solutions, achieving up to 42x speedup over the state-of-the-art sequential AP-TED, and outperforming the existing multicore parallel MC-TED by an average speedup of 31x.more » « less
- 
            Indexing is a core technique for accelerating predicate evaluation in databases. After many years of effort, the indexing performance has reached its peak on the existing hardware infrastructure. We propose to use ray tracing (RT) cores to move the indexing performance and efficiency to another level by addressing the following technical challenges: (1) the lack of an efficient mapping of predicate evaluation to a ray tracing job and (2) the poor performance by the heavy and imbalanced ray load when processing skewed datasets. These challenges set obstacles to effectively exploiting RT cores for predicate evaluation. In this paper, we propose RTScan, an approach that leverages RT cores to accelerate index scans. RTScan transforms the evaluation of conjunctive predicates into an efficient ray tracing job in a three-dimensional space. A set of techniques are designed in RTScan, i.e., Uniform Encoding, Data Sieving, and Matrix RT Refine, which significantly enhances the parallelism of scans on RT cores while lightening and balancing the ray load. With the proposed techniques, RTScan achieves high performance for datasets with either uniform or skewed distributions and queries with different selectivities. Extensive evaluations demonstrate that RTScan enhances the scan performance on RT cores by five orders of magnitude and outperforms the state-of-the-art approach on CPU by up to 4.6×.more » « less
- 
            R-tree is a foundational data structure used in spatial databases and scientific databases. With the advancement of networks and computer architectures, in-memory data processing for R-tree in distributed systems has become a common platform. We have observed new performance challenges to process R-tree as the amount of multidimensional datasets become increasingly high. Specifically, an R-tree server can be heavily overloaded while the network and client CPU are lightly loaded, and vice versa. In this article, we present the design and implementation of Catfish, an RDMA-enabled R-tree for low latency and high throughput by adaptively utilizing the available network bandwidth and computing resources to balance the workloads between clients and servers. We design and implement two basic mechanisms of using RDMA for a client-server R-tree data processing system. First, in the fast messaging design, we use RDMA writes to send R-tree requests to the server and let server threads process R-tree requests to achieve low query latency. Second, in the RDMA offloading design, we use RDMA reads to offload tree traversal from the server to the client, which rescues the server as it is overloaded. We further develop an adaptive scheme to effectively switch an R-tree search between fast messaging and RDMA offloading, maximizing the overall performance. Our experiments show that the adaptive solution of Catfish on InfiniBand significantly outperforms R-tree that uses only fast messaging or only RDMA offloading in both latency and throughput. Catfish can also deliver up to one order of magnitude performance over the traditional schemes using TCP/IP on 1 and 40 Gbps Ethernet. We make a strong case to use RDMA to effectively balance workloads in distributed systems for low latency and high throughput.more » « less
- 
            With the advancement and dominant service of Internet videos, the content-based video deduplication system becomes an essential and dependent infrastructure for Internet video service. However, the explosively growing video data on the Internet challenges the system design and implementation for its scalability in several ways. (1) Although the quantization-based indexing techniques are effective for searching visual features at a large scale, the costly re-training over the complete dataset must be done periodically. (2) The high-dimensional vectors for visual features demand increasingly large SSD space, degrading I/O performance. (3) Videos crawled from the Internet are diverse, and visually similar videos are not necessarily the duplicates, increasing deduplication complexity. (4) Most videos are edited ones. The duplicate contents are more likely discovered as clips inside the videos, demanding processing techniques with close attention to details. To address above-mentioned issues, we propose Maze, a full-fledged video deduplication system. Maze has an ANNS layer that indexes and searches the high dimensional feature vectors. The architecture of the ANNS layer supports efficient reads and writes and eliminates the data migration caused by re-training. Maze adopts the CNN-based feature and the ORB feature as the visual features, which are optimized for the specific video deduplication task. The features are compact and fully reside in the memory. Acoustic features are also incorporated in Maze so that the visually similar videos but having different audio tracks are recognizable. A clip-based matching algorithm is developed to discover duplicate contents at a fine granularity. Maze has been deployed as a production system for two years. It has indexed 1.3 billion videos and is indexing ~800 thousand videos per day. For the ANNS layer, the average read latency is 4 seconds and the average write latency is at most 4.84 seconds. The re-training over the complete dataset is no longer required no matter how many new data sets are added, eliminating the costly data migration between nodes. Maze recognizes the duplicate live streaming videos with both the similar appearance and the similar audio at a recall of 98%. Most importantly, Maze is also cost-effective. For example, the compact feature design helps save 5800 SSDs and the computation resources devoted to running the whole system decrease to 250K standard cores per billion videos.more » « less
- 
            Visual contents, including images and videos, are dominant on the Internet today. The conventional search engine is mainly designed for textual documents, which must be extended to process and manage increasingly high volumes of visual data objects. In this paper, we present Mixer, an effective system to identify and analyze visual contents and to extract their features for data retrievals, aiming at addressing two critical issues: (1) efficiently and timely understanding visual contents, (2) retrieving them at high precision and recall rates without impairing the performance. In Mixer, the visual objects are categorized into different classes, each of which has representative visual features. Subsystems for model production and model execution are developed. Two retrieval layers are designed and implemented for images and videos, respectively. In this way, we are able to perform aggregation retrievals of the two types in efficient ways. The experiments with Baidu's production workloads and systems show that Mixer halves the model production time and raises the feature production throughput by 9.14x. Mixer also achieves the precision and recall of video retrievals at 95% and 97%, respectively. Mixer has been in its daily operations, which makes the search engine highly scalable for visual contents at a low cost. Having observed productivity improvement of upper-level applications in the search engine, we believe our system framework would generally benefit other data processing applications.more » « less
- 
            null (Ed.)Nested queries are commonly used to express complex use-cases by connecting the output of a subquery as an input to the outer query block. However, their execution is highly time consuming. Researchers have proposed various algorithms and techniques that unnest subqueries to improve performance. Since this is a customized approach that needs high algorithmic and engineering efforts, it is largely not an open feature in most existing database systems. Our approach is general-purpose and GPU-acceleration based, aiming for high performance at a minimum development cost. We look into the major differences between nested and unnested query structures to identify their merits and limits for GPU processing. Furthermore, we focus on the nested approach that is algorithmically simple and rich in parallels, in relatively low space complexity, and generic in program structure. We create a new code generation framework that best fits GPU for the nested method. We also make several critical system optimizations including massive parallel scanning with indexing, effective vectorization to optimize join operations, exploiting cache locality for loops and efficient GPU memory management. We have implemented the proposed solutions in NestGPU, a GPU-based column-store database system that is GPU device independent. We have extensively evaluated and tested the system to show the effectiveness of our proposed methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available