skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Eshelby untwisting
The concept of Eshelby untwisting, the effect of an axial screw dislocation driving an intrinsically twisted nanocrystal towards a straighter configuration more consistent with long–range translational symmetry, is introduced here. Force-field simulations of nanorods built from the enantiomorphous (space groups, P 3 1 21 and P 3 2 21) crystal structures of benzil (C 6 H 5 –C(O)–C(O)–C 6 H 5 ) were previously shown to twist in opposite directions, even in the absence of dislocations. Here, both right- and left-handed screw dislocations were introduced into benzil nanorods in silico . For rods built from the P 3 2 21 enantiomorph, dislocations with negative Burgers vectors increased the right-handed twisting already present in the intrinsically twisted structures without dislocations, whereas dislocations with positive Burgers vectors drove the twisted structure back towards a straight configuration, untwisting. In the dynamic simulations, the P 3 2 21 helicoid endowed with a positive Burgers vector ultimately twisted back through the straight configuration, until a helicoid of opposite sense from that of the starting structure, was obtained. The bearing of these observations on the propensity of small crystals to adopt non-polyhedral morphologies is discussed.  more » « less
Award ID(s):
2003968
PAR ID:
10321113
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
57
Issue:
45
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Khoo, Iam Choon (Ed.)
    We explore the structures and confinement-induced edge dislocations in Grandjean-Cano wedge cells filled with the recently discovered chiral ferroelectric nematic (N_F^*) and chiral antiferroelectric smectic-Z 〖(SmZ〗_A^*). The chiral mixture is formed by DIO mesogen doped with a chiral additive. Wedge cells with parallel and antiparallel rubbing at the opposite plates show quantitatively different structures which is attributed to the polar in-plane anchoring of the spontaneous polarization at the rubbed substrates. The helical pitch shows a non-monotonous temperature dependence upon cooling, increasing as the temperature is lowered to the N^*-SmZ_A^* phase transition. The SmZ_A^* formed from an untwisted N^* in the thin portion of the wedge shows a bookshelf (BK) geometry, whereas the twisted N^* transforms into a twisted planar (PA) SmZ_A^* structure. In the N_F^* phase, the untwisted N^* becomes twisted in a wedge with antiparallel assembly of plates and monodomain in wedges with parallel assembly. The twisted regions of N_F^* show only one type of Grandjean zones separated by thick edge dislocations with Burgers vector b=P; the neighboring regions differ by 2π- twist. 
    more » « less
  2. Textured Mg alloy sheet samples were tensile tested parallel to the transverse direction, at Zener–Hollomon parameter values ranging from Z ~ 50 at room temperature and 10−3 s−1 down to Z ~ 18 at 350 °C and 10−5 s−1. At high Z, the samples exhibit strong texture evolution indicative of significant prismatic slip of dislocations with  Burgers vectors. Correspondingly, the plastic anisotropy is high, r ~ 4. At low Z, the texture evolution is minimal and the response is nearly isotropic, r ~ 1. Previously, it has been asserted that the high ductility and low plastic anisotropy observed at low Z conditions is due to enhanced activity of non-basal slip modes, including prismatic slip of  dislocations and pyramidal slip of  and  dislocations. The present results call this understanding into question and suggest that the enhanced ductility is more closely associated with the climb of  dislocations. 
    more » « less
  3. The paper presents a multiscale study of the kinetic processes of the heteroepitaxial growth of the PbSe/PbTe (111) and PbTe/PbSe(001) systems, using the Concurrent Atomistic-Continuum (CAC) method as the simulation tool. The CAC simulations have reproduced the Stranski–Krastanov growth mode and the layer-by-layer growth mode of the two systems, respectively; the pyramid-shaped island morphology of the PbSe epilayer on PbTe (111), the square-like misfit dislocation networks within the PbTe/PbSe(001) interface, and the critical thickness for the PbTe/PbSe(001) system at which coherent interfaces transit to semi-coherent interfaces with the formation of misfit dislocations, all in good agreement with experimental observations. Four types of misfit dislocations are found to form during the growth of the two PbTe/PbSe heterosystems, and hexagonal-like misfit dislocation networks are observed within the PbSe/PbTe(111) interfaces. The growth processes, including the formation of misfit dislocations, have been visualized. Dislocation half-loops have been observed to nucleate from the epilayer surfaces. These half-loops extend towards the interface by climb or glide motions, interact with other half-loops, and form misfit dislocation networks at the interfaces and threading dislocations extending from interfaces to epilayer surfaces. The dominant types of misfit dislocations in both systems are found to be those with Burgers vectors parallel to the interfaces, whereas the misfit dislocations with Burgers vectors inclined to the interface have a low likelihood of generation and tend to annihilate. The size of the substrate is demonstrated to have a significant effect on the formation, evolution, and distribution of dislocations on the growth of PbSe on PbTe(111). 
    more » « less
  4. The X-cube model, a prototypical gapped fracton model, was shown in Ref. [1] to have a foliation structure. That is, inside the 3+1 D model, there are hidden layers of 2+1 D gapped topological states. A screw dislocation in a 3+1 D lattice can often reveal nontrivial features associated with a layered structure. In this paper, we study the X-cube model on lattices with screw dislocations. In particular, we find that a screw dislocation results in a finite change in the logarithm of the ground state degeneracy of the model. Part of the change can be traced back to the effect of screw dislocations in a simple stack of 2+1 D topological states, hence corroborating the foliation structure in the model. The other part of the change comes from the induced motion of fractons or sub-dimensional excitations along the dislocation, a feature absent in the stack of 2+1D layers. 
    more » « less
  5. Spontaneous polarization as large as ∼28 μC/cm2 was recently observed around the dislocation cores in non-polar SrTiO3 bulk crystals, and its origin was attributed to the flexoelectric effect, i.e., polarization induced by strain gradients. However, the roles of flexoelectricity, relative to other electromechanical contributions, and the nature of dislocations, i.e., edge vs screw dislocations in the induced polarization, are not well understood. In this work, we study the role of flexoelectricity in inducing polarization around three types of dislocation cores in SrTiO3: b=a(100) edge dislocation, b=a(110) edge dislocation, and b=a(010) screw dislocation, where b is the Burgers vector. For the edge dislocations, polarization can be induced by electrostriction alone, while flexoelectricity is essential for stabilizing the symmetric polarization pattern. The shear component of the flexoelectric tensor has a dominant effect on the magnitude and spatial distribution of the flexoelectric polarization. In contrast, no polarization is induced around the b=a(010) screw dislocation through either electrostriction or flexoelectricity. Our findings provide an in-depth understanding of the role of flexoelectricity in inducing polarization around dislocation cores and offer insights into the defect engineering of dielectric/ferroelectric materials. 
    more » « less