skip to main content


Title: An Optimal Precursor of Northeast Pacific Marine Heatwaves and Central Pacific El Niño Events
Award ID(s):
1948627 1637632 2306046
PAR ID:
10321117
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To be useful and widely accepted, automated contact tracing schemes (also called exposure notification) need to solve two seemingly contradictory problems at the same time: they need to protect the anonymity of honest users while also preventing malicious users from creating false alarms. In this paper, we provide, for the first time, an exposure notification construction that guarantees the same levels of privacy and integrity as existing schemes but with a fully malicious database (notably similar to Auerbach et al. CT-RSA 2021) without special restrictions on the adversary. We construct a new definition so that we can formally prove our construction secure. Our definition ensures the following integrity guarantees: no malicious user can cause exposure warnings in two locations at the same time and that any uploaded exposure notifications must be recent and not previously uploaded. Our construction is efficient, requiring only a single message to be broadcast at contact time no matter how many recipients are nearby. To notify contacts of potential infection, an infected user uploads data with size linear in the number of notifications, similar to other schemes. Linear upload complexity is not trivial with our assumptions and guarantees (a naive scheme would be quadratic). This linear complexity is achieved with a new primitive: zero knowledge subset proofs over commitments which is used by our no cloning proof protocol. We also introduce another new primitive: set commitments on equivalence classes, which makes each step of our construction more efficient. Both of these new primitives are of independent interest.

     
    more » « less
  2. null (Ed.)
    Abstract Investigating Pacific Meridional Modes (PMM) without the influence of tropical Pacific variability is technically difficult if based on observations or fully coupled model simulations due to their overlapping spatial structures. To confront this issue, the present study investigates both North (NPMM) and South PMM (SPMM) in terms of their associated atmospheric forcing and response processes based on a mechanically decoupled climate model simulation. In this experiment, the climatological wind stress is prescribed over the tropical Pacific, which effectively removes dynamically coupled tropical Pacific variability (e.g., the El Niño-Southern Oscillation). Interannual NPMM in this experiment is forced not only by the North Pacific Oscillation, but also by a North Pacific tripole (NPT) pattern of atmospheric internal variability, which primarily forces decadal NPMM variability. Interannual and decadal variability of the SPMM is partly forced by the South Pacific Oscillation. In turn, both interannual and decadal NPMM variability can excite atmospheric teleconnections over the Northern Hemisphere extratropics by influencing the meridional displacement of the climatological intertropical convergence zone throughout the whole year. Similarly, both interannual and decadal SPMM variability can also excite atmospheric teleconnections over the Southern Hemisphere extratropics by extending/shrinking the climatological South Pacific convergence zone in all seasons. Our results highlight a new poleward pathway by which both the NPMM and SPMM feed back to the extratropical climate, in addition to the equatorward influence on tropical Pacific variability. 
    more » « less
  3. Abstract

    Previous studies argued that the Pacific Meridional Mode (PMM) impacts tropical cyclone (TC) genesis variability over the southeastern part of the western North Pacific (SE‐WNP). Here, we find that the statistical relationship between PMM and SE‐WNP TC genesis frequency is dominated by their co‐variability on decadal timescales. The decadal component of the PMM exhibits very similar temporal and spatial features to quasi‐decadal tropical Pacific sea surface temperature (SST) variability. The latter can affect SE‐WNP TC activity via changes in both zonal vertical wind shear and low‐level vorticity. In contrast, the interannual component of the PMM exhibits no statistically significant correlation with SE‐WNP TC genesis. Furthermore, observations show that both interannual and decadal variability of SE‐WNP TC activity are well correlated with the commonly used Niño3.4 El Niño‐Southern Oscillation index. Thus, equatorial Pacific SST variability is the dominant source of SE‐WNP TC activity predictability on different timescales.

     
    more » « less
  4. Abstract

    Variations of sea-surface temperature (SST) in the subtropical North Pacific have received considerable attention due to their potential role as a precursor of El Niño-Southern Oscillation (ENSO) events in the tropical Pacific as well as their role in regional climate impacts. These subtropical SST variations, known as the North Pacific Meridional Mode (PMM), are thought to be triggered by extratropical atmospheric forcing and amplified by air-sea coupling involving surface winds, evaporation, and SST. The PMM is often defined through a statistical technique called maximum covariance analysis (MCA) that identifies patterns of maximum covariability between SST and surface winds. Here we show that SST alone is sufficient to reproduce the MCA-based PMM index with near-perfect correlation. This dominance of the SST suggests that the MCA-based definition of the PMM may not be ideally suited for capturing two-way wind-SST interaction or, alternatively, that this interaction is relatively weak. We further show that the MCA-based PMM definition conflates intrinsic subtropical and remote ENSO variability, thereby undermining its interpretation as an ENSO precursor. Our findings indicate that, while air-sea coupling may be important for variability in the subtropical North Pacific, it cannot be reliably identified by the MCA-based definition of the PMM. This highlights the need for refined tools to diagnose variability in the subtropical North Pacific.

     
    more » « less