skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carleson embedding on tri-tree and on tri-disc
We prove multi-parameter dyadic embedding theorem for Hardy operator on the multi-tree. We also show that for a large class of Dirichlet spaces in bi-disc and tri-disc this proves the embedding theorem of those Dirichlet spaces of holomorphic function on bi- and tri-disc. We completely describe the Carleson measures for such embeddings. The result below generalizes embedding result of [AMPVZ] from bi- tree to tri-tree and from Carleson–Chang condition to Carleson box condition. One of our embedding description is similar to Carleson–Chang–Fefferman condition and involves dyadic open sets. On the other hand, the unusual feature is that embedding on bi-tree and tri-tree turned out to be equivalent to one box Carleson condition. This is in striking difference to works of Chang–Fefferman and well known Carleson quilt counterexample. Finally, we explain the obstacle that prevents us from proving our results on poly-discs of dimension four and higher.  more » « less
Award ID(s):
1900268
PAR ID:
10321163
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Revista matemática iberoamericana
ISSN:
2235-0616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We build the plethora of counterexamples to bi-parameter two weight embedding theorems. Two weight one parameter embedding results (which is the same as results of boundedness of two weight classical paraproducts, or two weight Carleson embedding theorems) are well known since the works of Sawyer in the 80’s. Bi-parameter case was considered by S. Y. A. Chang and R. Fefferman but only when underlying measure is Lebesgue measure. The embedding of holomorphic functions on bi-disc requires general input measure. In [9] we classified such embeddings if the output measure has tensor structure. In this note we give examples that without tensor structure requirement all results break down. 
    more » « less
  2. Nicola Arcozzi, Pavel Mozolyako, Karl-Mikael Perfekt, and Giulia Sarfatti recently gave the proof of a bi-parameter Carleson embedding theorem. Their proof uses heavily the notion of capacity on the bi-tree. In this note we give another proof of a bi-parameter Carleson embedding theorem that avoids the use of bi-tree capacity. Unlike the proof on a simple tree in a previous paper of the authors (Arcozzi et al. in Bellman function sitting on a tree, arXiv:1809.03397, 2018), which used the Bellman function technique, the proof here is based on some rather subtle comparisons of energies of measures on the bi-tree. 
    more » « less
  3. The article arXiv:1309.0945 by Do and Thiele develops a theory of Carleson embeddings in outer Lp spaces for the wave packet transform of functions in L^p, in the 2≤p≤∞ range referred to as local L^2. In this article, we formulate a suitable extension of this theory to exponents 1<2, answering a question posed in arXiv:1309.0945. The proof of our main embedding theorem involves a refined multi-frequency Calder\'on-Zygmund decomposition. We apply our embedding theorem to recover the full known range of Lp estimates for the bilinear Hilbert transforms without reducing to discrete model sums or appealing to generalized restricted weak-type interpolation. 
    more » « less
  4. Let $$\Omega\subset\re^{n+1}$$, $$n\ge 2$$, be a 1-sided chord-arc domain, that is, a domain which satisfies interior Corkscrew and Harnack Chain conditions (these are respectively scale-invariant/quantitative versions of the openness and path-connectedness), and whose boundary $$\partial\Omega$$ is $$n$$-dimensional Ahlfors regular. Consider $$L_0$$ and $$L$$ two real symmetric divergence form elliptic operators and let $$\omega_{L_0}$$, $$\omega_L$$ be the associated elliptic measures. We show that if $$\omega_{L_0}\in A_\infty(\sigma)$$, where $$\sigma=H^n\lfloor_{\partial\Omega}$$, and $$L$$ is a perturbation of $$L_0$$ (in the sense that the discrepancy between $$L_0$$ and $$L$$ satisfies certain Carleson measure condition), then $$\omega_L\in A_\infty(\sigma)$$. Moreover, if $$L$$ is a sufficiently small perturbation of $$L_0$$, then one can preserve the reverse H√∂lder classes, that is, if for some $$1<\infty$$, one has $$\omega_{L_0}\in RH_p(\sigma)$$ then $$\omega_{L}\in RH_p(\sigma)$$. Equivalently, if the Dirichlet problem with data in $$L^{p'}(\sigma)$$ is solvable for $$L_0$$ then so it is for $$L$$. These results can be seen as extensions of the perturbation theorems obtained by Dahlberg, Fefferman-Kenig-Pipher, and Milakis-Pipher-Toro in more benign settings. As a consequence of our methods we can show that for any perturbation of the Laplacian (or, more in general, of any elliptic symmetric operator with Lipschitz coefficients satisfying certain Carleson condition) if its elliptic measure belongs to $$A_\infty(\sigma)$$ then necessarily $$\Omega$$ is in fact an NTA domain (and hence chord-arc) and therefore its boundary is uniformly rectifiable. 
    more » « less
  5. In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves. 
    more » « less