skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Counterexamples for multi-parameter weighted paraproducts
We build the plethora of counterexamples to bi-parameter two weight embedding theorems. Two weight one parameter embedding results (which is the same as results of boundedness of two weight classical paraproducts, or two weight Carleson embedding theorems) are well known since the works of Sawyer in the 80’s. Bi-parameter case was considered by S. Y. A. Chang and R. Fefferman but only when underlying measure is Lebesgue measure. The embedding of holomorphic functions on bi-disc requires general input measure. In [9] we classified such embeddings if the output measure has tensor structure. In this note we give examples that without tensor structure requirement all results break down.  more » « less
Award ID(s):
1900268
PAR ID:
10321196
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Comptes rendus mathematiques de lAcademie des sciences
Volume:
358
ISSN:
0706-1994
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove multi-parameter dyadic embedding theorem for Hardy operator on the multi-tree. We also show that for a large class of Dirichlet spaces in bi-disc and tri-disc this proves the embedding theorem of those Dirichlet spaces of holomorphic function on bi- and tri-disc. We completely describe the Carleson measures for such embeddings. The result below generalizes embedding result of [AMPVZ] from bi- tree to tri-tree and from Carleson–Chang condition to Carleson box condition. One of our embedding description is similar to Carleson–Chang–Fefferman condition and involves dyadic open sets. On the other hand, the unusual feature is that embedding on bi-tree and tri-tree turned out to be equivalent to one box Carleson condition. This is in striking difference to works of Chang–Fefferman and well known Carleson quilt counterexample. Finally, we explain the obstacle that prevents us from proving our results on poly-discs of dimension four and higher. 
    more » « less
  2. Nicola Arcozzi, Pavel Mozolyako, Karl-Mikael Perfekt, and Giulia Sarfatti recently gave the proof of a bi-parameter Carleson embedding theorem. Their proof uses heavily the notion of capacity on the bi-tree. In this note we give another proof of a bi-parameter Carleson embedding theorem that avoids the use of bi-tree capacity. Unlike the proof on a simple tree in a previous paper of the authors (Arcozzi et al. in Bellman function sitting on a tree, arXiv:1809.03397, 2018), which used the Bellman function technique, the proof here is based on some rather subtle comparisons of energies of measures on the bi-tree. 
    more » « less
  3. In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves. 
    more » « less
  4. The familiar divergence and Kelvin–Stokes theorem are generalized by a tensor-valued identity that relates the volume integral of the gradient of a vector field to the integral over the bounding surface of the tensor product of the vector field with the exterior normal. The importance of this long-established yet relatively little-known result is discussed. In flat two-dimensional space, it reduces to a relationship between an integral over an area and that over its bounding curve, combining the two-dimensional divergence and Kelvin–Stokes theorems together with two related theorems involving the strain, as is shown through a decomposition using a suitable tensor basis. A fluid dynamical application to oceanic observations along the trajectory of a moving platform is given. The potential extension of the generalized two-dimensional identity to curved surfaces is considered and is shown not to hold. Finally, the paper includes a substantial background section on tensor analysis, and presents results in both symbolic notation and index notation in order to emphasize the correspondence between these two notational systems. 
    more » « less
  5. Tensor dimensionality reduction is one of the fundamental tools for modern data science. To address the high computational overhead, fiber-wise sampled subtensors that preserve the original tensor rank are often used in designing efficient and scalable tensor dimensionality reduction. However, the theory of property inheritance for subtensors is still underdevelopment, that is, how the essential properties of the original tensor will be passed to its subtensors. This paper theoretically studies the property inheritance of the two key tensor properties, namely incoherence and condition number, under the tensor train setting. We also show how tensor train rank is preserved through fiber-wise sampling. The key parameters introduced in theorems are numerically evaluated under various settings. The results show that the properties of interest can be well preserved to the subtensors formed via fiber-wise sampling. Overall, this paper provides several handy analytic tools for developing efficient tensor analysis methods. 
    more » « less