skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900268

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kisliakov, Sergei; Nikolski, Nikolai (Ed.)
    The local Lipschitz property is shown for the graphs avoiding multiple point intersection with lines directed in a given cone. The assumption is much stronger than those of Marstrand’s well-known theorem, but the conclusion is much stronger too. Additionally, a continuous curve with a similar property is σ-finite with respect to Hausdorff length and an estimate on the Hausdorff measure of each “piece” is found. 
    more » « less
  2. The tail of distribution (i.e., the measure of the set { f ≥ x } \{f\ge x\} ) is estimated for those functions f f whose dyadic square function is bounded by a given constant. In particular, an estimate following from the Chang–Wilson–Wolf theorem is slightly improved. The study of the Bellman function corresponding to the problem reveals a curious structure of this function: it has jumps of the first derivative at a dense subset of the interval [ 0 , 1 ] [0,1] (where it is calculated exactly), but it is of C ∞ C^\infty -class for x > 3 x>\sqrt 3 (where it is calculated up to a multiplicative constant). An unusual feature of the paper consists of the usage of computer calculations in the proof. Nevertheless, all the proofs are quite rigorous, since only the integer arithmetic was assigned to a computer. 
    more » « less
  3. We prove multi-parameter dyadic embedding theorem for Hardy operator on the multi-tree. We also show that for a large class of Dirichlet spaces in bi-disc and tri-disc this proves the embedding theorem of those Dirichlet spaces of holomorphic function on bi- and tri-disc. We completely describe the Carleson measures for such embeddings. The result below generalizes embedding result of [AMPVZ] from bi- tree to tri-tree and from Carleson–Chang condition to Carleson box condition. One of our embedding description is similar to Carleson–Chang–Fefferman condition and involves dyadic open sets. On the other hand, the unusual feature is that embedding on bi-tree and tri-tree turned out to be equivalent to one box Carleson condition. This is in striking difference to works of Chang–Fefferman and well known Carleson quilt counterexample. Finally, we explain the obstacle that prevents us from proving our results on poly-discs of dimension four and higher. 
    more » « less
  4. We give a sharp estimate of the number of zeros of analytic functions in the unit disc belonging to analytic quasianalytic Carleman–Gevrey classes. As an application, we estimate the number of the eigenvalues for discrete Schrödinger operators with rapidly decreasing complex-valued potentials, and, more generally, for non-symmetric Jacobi matrices. 
    more » « less
  5. Nicola Arcozzi, Pavel Mozolyako, Karl-Mikael Perfekt, and Giulia Sarfatti recently gave the proof of a bi-parameter Carleson embedding theorem. Their proof uses heavily the notion of capacity on the bi-tree. In this note we give another proof of a bi-parameter Carleson embedding theorem that avoids the use of bi-tree capacity. Unlike the proof on a simple tree in a previous paper of the authors (Arcozzi et al. in Bellman function sitting on a tree, arXiv:1809.03397, 2018), which used the Bellman function technique, the proof here is based on some rather subtle comparisons of energies of measures on the bi-tree. 
    more » « less
  6. A nonlinear analogue of the Rademacher type of a Banach space was introduced in classical work of Enflo. The key feature of Enflo type is that its definition uses only the metric structure of the Banach space, while the definition of Rademacher type relies on its linear structure. We prove that Rademacher type and Enflo type coincide, settling a long-standing open problem in Banach space theory. The proof is based on a novel dimension- free analogue of Pisier’s inequality on the discrete cube. 
    more » « less
  7. We build the plethora of counterexamples to bi-parameter two weight embedding theorems. Two weight one parameter embedding results (which is the same as results of boundedness of two weight classical paraproducts, or two weight Carleson embedding theorems) are well known since the works of Sawyer in the 80’s. Bi-parameter case was considered by S. Y. A. Chang and R. Fefferman but only when underlying measure is Lebesgue measure. The embedding of holomorphic functions on bi-disc requires general input measure. In [9] we classified such embeddings if the output measure has tensor structure. In this note we give examples that without tensor structure requirement all results break down. 
    more » « less