skip to main content


Title: Technical note: Novel triple O<sub>2</sub> sensor aquatic eddy covariance instrument with improved time shift correction reveals central role of microphytobenthos for carbon cycling in coral reef sands
Abstract. The aquatic eddy covariance technique stands out as a powerful method for benthic O2 flux measurements in shelf environments because itintegrates effects of naturally varying drivers of the flux such as current flow and light. In conventional eddy covariance instruments, the timeshift caused by spatial separation of the measuring locations of flow and O2 concentration can produce substantial flux errors that aredifficult to correct. We here introduce a triple O2 sensor eddy covariance instrument (3OEC) that by instrument design eliminates theseerrors. This is achieved by positioning three O2 sensors around the flow measuring volume, which allows the O2concentration to be calculated at the point of the current flow measurements. The new instrument was tested in an energetic coastal environment with highly permeablecoral reef sands colonised by microphytobenthos. Parallel deployments of the 3OEC and a conventional eddy covariance system (2OEC) demonstrate thatthe new instrument produces more consistent fluxes with lower error margin. 3OEC fluxes in general were lower than 2OEC fluxes, and the nighttimefluxes recorded by the two instruments were statistically different. We attribute this to the elimination of uncertainties associated with the timeshift correction. The deployments at ∼ 10 m water depth revealed high day- and nighttime O2 fluxes despite the relatively loworganic content of the coarse sediment and overlying water. High light utilisation efficiency of the microphytobenthos and bottom currents increasingpore water exchange facilitated the high benthic production and coupled respiration. 3OEC measurements after sunset documented a gradual transfer ofnegative flux signals from the small turbulence generated at the sediment–water interface to the larger wave-dominated eddies of the overlying watercolumn that still carried a positive flux signal, suggesting concurrent fluxes in opposite directions depending on eddy size and a memory effect oflarge eddies. The results demonstrate that the 3OEC can improve the precision of benthic flux measurements, including measurements in environmentsconsidered challenging for the eddy covariance technique, and thereby produce novel insights into the mechanisms that control flux. We consider thefluxes produced by this instrument for the permeable reef sands the most realistic achievable with present-day technology.  more » « less
Award ID(s):
1851290 1851424 1824144
NSF-PAR ID:
10321167
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
18
Issue:
19
ISSN:
1726-4189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Sediment–water oxygen fluxes are widely used as a proxy fororganic carbon production and mineralization at the seafloor. In situ fluxescan be measured non-invasively with the aquatic eddy covariance technique,but a critical requirement is that the sensors of the instrument are able tocorrectly capture the high-frequency variations in dissolved oxygenconcentration and vertical velocity. Even small changes in sensorcharacteristics during deployment as caused, e.g. by biofouling can result inerroneous flux data. Here we present a dual-optode eddy covarianceinstrument (2OEC) with two fast oxygen fibre sensors and document howerroneous flux interpretations and data loss can effectively be reduced bythis hardware and a new data analysis approach. With deployments over acarbonate sandy sediment in the Florida Keys and comparison with parallelbenthic advection chamber incubations, we demonstrate the improved dataquality and data reliability facilitated by the instrument and associateddata processing. Short-term changes in flux that are dubious in measurementswith single oxygen sensor instruments can be confirmed or rejected with the2OEC and in our deployments provided new insights into the temporal dynamicsof benthic oxygen flux in permeable carbonate sands. Under steadyconditions, representative benthic flux data can be generated with the 2OECwithin a couple of hours, making this technique suitable for mappingsediment–water, intra-water column, or atmosphere–water fluxes. 
    more » « less
  2. null (Ed.)
    Abstract. Flux measurements of nitrogen oxides (NOx) were made over London usingairborne eddy covariance from a low-flying aircraft. Seven low-altitude flights were conducted over Greater London, performing multiple overpasses across the city during eight days in July 2014. NOx fluxes across theGreater London region (GLR) exhibited high heterogeneity and strong diurnalvariability, with central areas responsible for the highest emission rates(20–30 mg m−2 h−1). Other high-emission areas included the M25 orbital motorway. The complexity of London's emission characteristics makes it challenging to pinpoint single emissions sources definitively usingairborne measurements. Multiple sources, including road transport andresidential, commercial and industrial combustion sources, are all likely to contribute to measured fluxes. Measured flux estimates were compared toscaled National Atmospheric Emissions Inventory (NAEI) estimates, accountingfor monthly, daily and hourly variability. Significant differences were found between the flux-driven emissions and the NAEI estimates acrossGreater London, with measured values up to 2 times higher in Central London than those predicted by the inventory. To overcome the limitations ofusing the national inventory to contextualise measured fluxes, we usedphysics-guided flux data fusion to train environmental response functions(ERFs) between measured flux and environmental drivers (meteorological and surface). The aim was to generate time-of-day emission surfaces usingcalculated ERF relationships for the entire GLR; 98 % spatial coverage was achieved across the GLR at 400 m2 spatial resolution. All flight legprojections showed substantial heterogeneity across the domain, with highemissions emanating from Central London and major road infrastructure. Thediurnal emission structure of the GLR was also investigated, through ERF,with the morning rush hour distinguished from lower emissions during the early afternoon. Overall, the integration of airborne fluxes with anERF-driven strategy enabled the first independent generation of surfaceNOx emissions, at high resolution using an eddy-covariance approach,for an entire city region. 
    more » « less
  3. null (Ed.)
    Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper. 
    more » « less
  4. Abstract

    In shallow coastal systems, sediments are exposed to dramatic and complex variability in environmental conditions that influences sediment processes on short timescales. Sediment oxygen demand (SOD), or consumption of oxygen by sediment‐dwelling organisms and chemical reactions within sediments, is one such process and an important metric of aquatic ecosystem functioning and health. The most common instruments used to measure SOD in situ are batch‐style benthic chambers, which generally require long measurement periods to resolve fluxes and thus do not capture the high temporal variability in SOD that can be driven by dynamic coastal processes. These techniques also preclude linking changes in SOD through time to specific features of the sediment, for example, shifts in sediment faunal activities which can vary on short time scales and can also be affected by ambient oxygen concentrations. Here we present an in situ semi‐flow through instrument to repeatedly measure SOD in discrete areas of sediment. The system isolates patches of sediment in replicate benthic chambers, and measures and records oxygen decrease for a short time before refreshing the overlying water in the chamber with water from the external environment. This results in a sawtooth pattern in which each tooth is an incubation, providing an automated method to produce direct measurements of in situ SOD that can be directly linked to an area of sediment and related to rapid shifts in environmental conditions.

     
    more » « less
  5. Abstract

    The aquatic eddy covariance technique is increasingly used to determine oxygen (O2) fluxes over benthic ecosystems. The technique uses O2measuring systems that have a high temporal and numerical resolution. In this study, we performed a series of lab and field tests to assess a new optical submersible O2meter designed for aquatic eddy covariance measurements and equipped with an existing ultra‐high speed optical fiber sensor. The meter has a 16‐bit digital‐to‐analog‐signal conversion that produces a 0–5 V output at a rate up to 40 Hz. The device was paired with an acoustic Doppler velocimeter. The combined meter and fiber‐optic O2sensor's response time was significantly faster in O2‐undersaturated water compared to in O2‐supersaturated water (0.087 vs. 0.12 s), but still sufficiently fast for aquatic eddy covariance measurements. The O2optode signal was not sensitive to variations in water flow or light exposure. However, the response time was affected by the direction of the flow. When the sensor tip was exposed to a flow from the back rather than the front, the response time increased by 37%. The meter's internal signal processing time was determined to be ~ 0.05 s, a delay that can be corrected for during postprocessing. In order for the built‐in temperature correction to be accurate, the meter should always be submerged with the fiber‐optic sensor. In multiple 21–47 h field tests, the system recorded consistently high‐quality, low‐noise O2flux data. Overall, the new meter is a powerful option for collecting robust aquatic eddy covariance data.

     
    more » « less