skip to main content


Title: Spatially and temporally resolved measurements of NO<sub><i>x</i></sub> fluxes by airborne eddy covariance over Greater London
Abstract. Flux measurements of nitrogen oxides (NOx) were made over London usingairborne eddy covariance from a low-flying aircraft. Seven low-altitude flights were conducted over Greater London, performing multiple overpasses across the city during eight days in July 2014. NOx fluxes across theGreater London region (GLR) exhibited high heterogeneity and strong diurnalvariability, with central areas responsible for the highest emission rates(20–30 mg m−2 h−1). Other high-emission areas included the M25 orbital motorway. The complexity of London's emission characteristics makes it challenging to pinpoint single emissions sources definitively usingairborne measurements. Multiple sources, including road transport andresidential, commercial and industrial combustion sources, are all likely to contribute to measured fluxes. Measured flux estimates were compared toscaled National Atmospheric Emissions Inventory (NAEI) estimates, accountingfor monthly, daily and hourly variability. Significant differences were found between the flux-driven emissions and the NAEI estimates acrossGreater London, with measured values up to 2 times higher in Central London than those predicted by the inventory. To overcome the limitations ofusing the national inventory to contextualise measured fluxes, we usedphysics-guided flux data fusion to train environmental response functions(ERFs) between measured flux and environmental drivers (meteorological and surface). The aim was to generate time-of-day emission surfaces usingcalculated ERF relationships for the entire GLR; 98 % spatial coverage was achieved across the GLR at 400 m2 spatial resolution. All flight legprojections showed substantial heterogeneity across the domain, with highemissions emanating from Central London and major road infrastructure. Thediurnal emission structure of the GLR was also investigated, through ERF,with the morning rush hour distinguished from lower emissions during the early afternoon. Overall, the integration of airborne fluxes with anERF-driven strategy enabled the first independent generation of surfaceNOx emissions, at high resolution using an eddy-covariance approach,for an entire city region.  more » « less
Award ID(s):
1724433 1822420
NSF-PAR ID:
10300766
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
19
ISSN:
1680-7324
Page Range / eLocation ID:
15283 to 15298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Fluxes of nitrogen oxides (NOx=NO+NO2) and carbon dioxide (CO2) were measured using eddy covariance at the British Telecommunications (BT) Tower in central London during the coronavirus pandemic. Comparing fluxes to those measured in 2017 prior to the pandemic restrictions and the introduction of the Ultra-Low Emissions Zone (ULEZ) highlighted a 73 % reduction in NOx emissions between the two periods but only a 20 % reduction in CO2 emissions and a 32 % reduction in traffic load. Use of a footprint model and the London Atmospheric Emissions Inventory (LAEI) identified transport and heat and power generation to be the two dominant sources of NOx and CO2 but with significantly different relative contributions for each species. Application of external constraints on NOx and CO2 emissions allowed the reductions in the different sources to be untangled, identifying that transport NOx emissions had reduced by >73 % since 2017. This was attributed in part to the success of air quality policy in central London but crucially due to the substantial reduction in congestion that resulted from pandemic-reduced mobility. Spatial mapping of the fluxes suggests that central London was dominated by point source heat and power generation emissions during the period of reduced mobility. This will have important implications on future air quality policy for NO2 which, until now, has been primarily focused on the emissions from diesel exhausts. 
    more » « less
  2. null (Ed.)
    Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper. 
    more » « less
  3. Abstract. During March–June 2017 emissions of nitrogen oxides were measured via eddy covariance at the British Telecom Tower in central London, UK. Through the use of a footprint model the expected emissions were simulated from the spatially resolved National Atmospheric Emissions Inventory for 2017 and compared with the measured emissions. These simulated emissions were shown to underestimate measured emissions during the daytime by a factor of 1.48, but they agreed well overnight. Furthermore, underestimations were spatially mapped, and the areas around the measurement site responsible for differences in measured and simulated emissions were inferred. It was observed that areas of higher traffic, such as major roads near national rail stations, showed the greatest underestimation by the simulated emissions. These discrepancies are partially attributed to a combination of the inventory not fully capturing traffic conditions in central London and both the spatial and temporal resolution of the inventory not fully describing the high heterogeneity of the urban centre. Understanding of this underestimation may be further improved with longer measurement time series to better understand temporal variation and improved temporal scaling factors to better simulate sub-annual emissions. 
    more » « less
  4. null (Ed.)
    Abstract. Mixing ratios of volatile organic compounds (VOCs) were recordedin two field campaigns in central Beijing as part of the Air Pollution andHuman Health in a Chinese Megacity (APHH) project. These data were used tocalculate, for the first time in Beijing, the surface–atmosphere fluxes ofVOCs using eddy covariance, giving a top-down estimation of VOC emissionsfrom a central area of the city. The results were then used to evaluate theaccuracy of the Multi-resolution Emission Inventory for China (MEIC). TheAPHH winter and summer campaigns took place in November and December 2016and May and June 2017, respectively. The largest VOC fluxes observed were ofsmall oxygenated compounds such as methanol, ethanol + formic acid andacetaldehyde, with average emission rates of 8.31 ± 8.5, 3.97 ± 3.9 and 1.83 ± 2.0 nmol m−2 s−1, respectively, in the summer.A large flux of isoprene was observed in the summer, with an average emissionrate of 5.31 ± 7.7 nmol m−2 s−1. While oxygenated VOCs madeup 60 % of the molar VOC flux measured, when fluxes were scaled by ozoneformation potential and peroxyacyl nitrate (PAN) formation potential thehigh reactivity of isoprene and monoterpenes meant that these speciesrepresented 30 % and 28 % of the flux contribution to ozone and PANformation potential, respectively. Comparison of measured fluxes with theemission inventory showed that the inventory failed to capture the magnitudeof VOC emissions at the local scale. 
    more » « less
  5. Accelerated warming in the Arctic has led to concern regarding the amount of carbon emission potential from Arctic water bodies. Yet, aquatic carbon dioxide (CO 2 ) and methane (CH 4 ) flux measurements remain scarce, particularly at high resolution and over long periods of time. Effluxes of methane (CH 4 ) and carbon dioxide (CO 2 ) from Toolik Lake, a deep glacial lake in northern Alaska, were measured for the first time with the direct eddy covariance (EC) flux technique during six ice-free lake periods (2010–2015). CO 2 flux estimates from the lake (daily average efflux of 16.7 ± 5.3 mmol m −2 d −1 ) were in good agreement with earlier estimates from 1975–1989 using different methods. CH 4 effluxes in 2010–2015 (averaging 0.13 ± 0.06 mmol m −2 d −1 ) showed an interannual variation that was 4.1 times greater than median diel variations, but mean fluxes were almost one order of magnitude lower than earlier estimates obtained from single water samples in 1990 and 2011–2012. The overall global warming potential (GWP) of Toolik Lake is thus governed mostly by CO 2 effluxes, contributing 86–93% of the ice-free period GWP of 26–90 g CO 2,eq m −2 . Diel variation in fluxes was also important, with up to a 2-fold (CH 4 ) to 4-fold (CO 2 ) difference between the highest nighttime and lowest daytime effluxes. Within the summer ice-free period, on average, CH 4 fluxes increased 2-fold during the first half of the summer, then remained almost constant, whereas CO 2 effluxes remained almost constant over the entire summer, ending with a linear increase during the last 1–2 weeks of measurements. Due to the cold bottom temperatures of this 26 m deep lake, and the absence of ebullition and episodic flux events, Toolik Lake and other deep glacial lakes are likely not hot spots for greenhouse gas emissions, but they still contribute to the overall GWP of the Arctic. 
    more » « less