skip to main content


Title: Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition

We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$ S_p $\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$ S_p $\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$ S_p $\end{document} regularity leads to the uniqueness of weak solutions.

 
more » « less
Award ID(s):
2055244
NSF-PAR ID:
10321247
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Kinetic and Related Models
Volume:
15
Issue:
3
ISSN:
1937-5093
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the linear third order (in time) PDE known as the SMGTJ-equation, defined on a bounded domain, under the action of either Dirichlet or Neumann boundary control \begin{document}$ g $\end{document}. Optimal interior and boundary regularity results were given in [1], after [41], when \begin{document}$ g \in L^2(0, T;L^2(\Gamma)) \equiv L^2(\Sigma) $\end{document}, which, moreover, in the canonical case \begin{document}$ \gamma = 0 $\end{document}, were expressed by the well-known explicit representation formulae of the wave equation in terms of cosine/sine operators [19], [17], [24,Vol Ⅱ]. The interior or boundary regularity theory is however the same, whether \begin{document}$ \gamma = 0 $\end{document} or \begin{document}$ 0 \neq \gamma \in L^{\infty}(\Omega) $\end{document}, since \begin{document}$ \gamma \neq 0 $\end{document} is responsible only for lower order terms. Here we exploit such cosine operator based-explicit representation formulae to provide optimal interior and boundary regularity results with \begin{document}$ g $\end{document} "smoother" than \begin{document}$ L^2(\Sigma) $\end{document}, qualitatively by one unit, two units, etc. in the Dirichlet boundary case. To this end, we invoke the corresponding results for wave equations, as in [17]. Similarly for the Neumann boundary case, by invoking the corresponding results for the wave equation as in [22], [23], [37] for control smoother than \begin{document}$ L^2(0, T;L^2(\Gamma)) $\end{document}, and [44] for control less regular in space than \begin{document}$ L^2(\Gamma) $\end{document}. In addition, we provide optimal interior and boundary regularity results when the SMGTJ equation is subject to interior point control, by invoking the corresponding wave equations results [42], [24,Section 9.8.2].

     
    more » « less
  2. We consider the well-known Lieb-Liniger (LL) model for \begin{document}$ N $\end{document} bosons interacting pairwise on the line via the \begin{document}$ \delta $\end{document} potential in the mean-field scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the time-dependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the one-dimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [3] relying on the formalism of second quantization and coherent states and without an explicit rate, our proof is based on the counting method of Pickl [65,66,67] and Knowles and Pickl [44]. To overcome difficulties stemming from the singularity of the \begin{document}$ \delta $\end{document} potential, we introduce a new short-range approximation argument that exploits the Hölder continuity of the \begin{document}$ N $\end{document}-body wave function in a single particle variable. By further exploiting the \begin{document}$ L^2 $\end{document}-subcritical well-posedness theory for the 1D cubic NLS, we can prove mean-field convergence when the limiting solution to the NLS has finite mass, but only for a very special class of \begin{document}$ N $\end{document}-body initial states.

     
    more » « less
  3. This paper studies a family of generalized surface quasi-geostrophic (SQG) equations for an active scalar \begin{document}$ \theta $\end{document} on the whole plane whose velocities have been mildly regularized, for instance, logarithmically. The well-posedness of these regularized models in borderline Sobolev regularity have previously been studied by D. Chae and J. Wu when the velocity \begin{document}$ u $\end{document} is of lower singularity, i.e., \begin{document}$ u = -\nabla^{\perp} \Lambda^{ \beta-2}p( \Lambda) \theta $\end{document}, where \begin{document}$ p $\end{document} is a logarithmic smoothing operator and \begin{document}$ \beta \in [0, 1] $\end{document}. We complete this study by considering the more singular regime \begin{document}$ \beta\in(1, 2) $\end{document}. The main tool is the identification of a suitable linearized system that preserves the underlying commutator structure for the original equation. We observe that this structure is ultimately crucial for obtaining continuity of the flow map. In particular, straightforward applications of previous methods for active transport equations fail to capture the more nuanced commutator structure of the equation in this more singular regime. The proposed linearized system nontrivially modifies the flux of the original system in such a way that it coincides with the original flux when evaluated along solutions of the original system. The requisite estimates are developed for this modified linear system to ensure its well-posedness.

     
    more » « less
  4. We consider optimal control of fractional in time (subdiffusive, i.e., for \begin{document}$ 0<\gamma <1 $\end{document}) semilinear parabolic PDEs associated with various notions of diffusion operators in an unifying fashion. Under general assumptions on the nonlinearity we \begin{document}$\mathsf{first\;show}$\end{document} the existence and regularity of solutions to the forward and the associated \begin{document}$\mathsf{backward\;(adjoint)}$\end{document} problems. In the second part, we prove existence of optimal \begin{document}$\mathsf{controls }$\end{document} and characterize the associated \begin{document}$\mathsf{first\;order}$\end{document} optimality conditions. Several examples involving fractional in time (and some fractional in space diffusion) equations are described in detail. The most challenging obstacle we overcome is the failure of the semigroup property for the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.

     
    more » « less
  5. We establish an instantaneous smoothing property for decaying solutions on the half-line \begin{document}$ (0, +\infty) $\end{document} of certain degenerate Hilbert space-valued evolution equations arising in kinetic theory, including in particular the steady Boltzmann equation. Our results answer the two main open problems posed by Pogan and Zumbrun in their treatment of \begin{document}$ H^1 $\end{document} stable manifolds of such equations, showing that \begin{document}$ L^2_{loc} $\end{document} solutions that remain sufficiently small in \begin{document}$ L^\infty $\end{document} (i) decay exponentially, and (ii) are \begin{document}$ C^\infty $\end{document} for \begin{document}$ t>0 $\end{document}, hence lie eventually in the \begin{document}$ H^1 $\end{document} stable manifold constructed by Pogan and Zumbrun.

     
    more » « less