Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Let the viscosity for the 2D steady Navier‐Stokes equations in the region and with no slip boundary conditions at . For , we justify the validity of the steady Prandtl layer expansion for scaled Prandtl layers, including the celebrated Blasius boundary layer. Our uniform estimates in ε are achieved through a fixed‐point scheme:for solving the Navier‐Stokes equations, where are the tangential and normal velocities at , DNS stands for of the vorticity equation for the normal velocityv, and the compatibility ODE for at .more » « less
- 
            Abstract While it is well known that constant rotation induces linear dispersive effects in various fluid models, we study here its effect on long time nonlinear dynamics in the inviscid setting. More precisely, we investigate stability in the 3d rotating Euler equations in with afixedspeed of rotation. We show that for any , axisymmetric initial data of sufficiently small size ε lead to solutions that exist for a long time at least and disperse. This is a manifestation of the stabilizing effect of rotation, regardless of its speed. To achieve this we develop an anisotropic framework that naturally builds on the available symmetries. This allows for a precise quantification and control of the geometry of nonlinear interactions, while at the same time giving enough information to obtain dispersive decay via adapted linear dispersive estimates.more » « less
- 
            Abstract In the supercritical range of the polytropic indices$$\gamma \in (1,\frac{4}{3})$$ we show the existence of smooth radially symmetric self-similar solutions to the gravitational Euler–Poisson system. These solutions exhibit gravitational collapse in the sense that the density blows up in finite time. Some of these solutions were numerically found by Yahil in 1983 and they can be thought of as polytropic analogues of the Larson–Penston collapsing solutions in the isothermal case$$\gamma =1$$ . They each contain a sonic point, which leads to numerous mathematical difficulties in the existence proof.more » « less
- 
            In this paper we study the dynamics of an incompressible viscous fluid evolving in an open-top container in two dimensions. The fluid mechanics are dictated by the Navier–Stokes equations. The upper boundary of the fluid is free and evolves within the container. The fluid is acted upon by a uniform gravitational field, and capillary forces are accounted for along the free boundary. The triple-phase interfaces where the fluid, air above the vessel, and solid vessel wall come in contact are called contact points, and the angles formed at the contact point are called contact angles. The model that we consider integrates boundary conditions that allow for full motion of the contact points and angles. Equilibrium configurations consist of quiescent fluid within a domain whose upper boundary is given as the graph of a function minimizing a gravity-capillary energy functional, subject to a fixed mass constraint. The equilibrium contact angles can take on any values between 0 and\pidepending on the choice of capillary parameters. The main thrust of the paper is the development of a scheme of a priori estimates that show that solutions emanating from data sufficiently close to the equilibrium exist globally in time and decay to equilibrium at an exponential rate.more » « less
- 
            Abstract In 1990, based on numerical and formal asymptotic analysis, Ori and Piran predicted the existence of selfsimilar spacetimes, called relativistic Larson-Penston solutions, that can be suitably flattened to obtain examples of spacetimes that dynamically form naked singularities from smooth initial data, and solve the radially symmetric Einstein-Euler system. Despite its importance, a rigorous proof of the existence of such spacetimes has remained elusive, in part due to the complications associated with the analysis across the so-called sonic hypersurface. We provide a rigorous mathematical proof. Our strategy is based on a delicate study of nonlinear invariances associated with the underlying non-autonomous dynamical system to which the problem reduces after a selfsimilar reduction. Key technical ingredients are a monotonicity lemma tailored to the problem, an ad hoc shooting method developed to construct a solution connecting the sonic hypersurface to the so-called Friedmann solution, and a nonlinear argument to construct the maximal analytic extension of the solution. Finally, we reformulate the problem in double-null gauge to flatten the selfsimilar profile and thus obtain an asymptotically flat spacetime with an isolated naked singularity.more » « less
- 
            Abstract We construct a class of global, dynamical solutions to the 3 d Euler equations near the stationary state given by uniform “rigid body” rotation. These solutions are axisymmetric, of Sobolev regularity, have non-vanishing swirl and scatter linearly, thanks to the dispersive effect induced by the rotation. To establish this, we introduce a framework that builds on the symmetries of the problem and precisely captures the anisotropic, dispersive mechanism due to rotation. This enables a fine analysis of the geometry of nonlinear interactions and allows us to propagate sharp decay bounds, which is crucial for the construction of global Euler flows.more » « less
- 
            We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
