Abstract Evolutionary biologists have long sought to understand what factors affect the repeatability of adaptive outcomes. To better understand the role of temperature in determining the repeatability of adaptive trajectories, we evolved populations of different genotypes of the ciliateTetrahymena thermophilaat low and high temperatures and followed changes in growth rate over 6,500 generations. As expected, growth rate increased with a decelerating rate for all populations; however, there were differences in the patterns of evolution at the two temperatures. The growth rates of the different genotypes tended to converge as evolution proceeded at both temperatures, but this convergence was quicker and more pronounced at the higher temperature. Additionally, over the first 4,000 generations we found greater repeatability of evolution, in terms of change in growth rate, among replicates of the same genotype at the higher temperature. Finally, we found limited evidence of trade‐offs in fitness between temperatures, and an asymmetry in the correlated responses, whereby evolution in a high temperature increases growth rate at the lower temperature significantly more than the reverse. These results demonstrate the importance of temperature in determining the repeatability of evolutionary trajectories for the eukaryotic microbeTetrahymena thermophilaand may provide clues to how temperature affects evolution more generally.
more »
« less
Experimental Evolution in Tetrahymena
Experimental evolution has provided novel insight into a wide array of biological processes. Species in the genus Tetrahymena are proving to be a highly useful system for studying a range of questions using experimental evolution. Their unusual genomic architecture, diversity of life history traits, importance as both predator and prey, and amenability to laboratory culture allow them to be studied in a variety of contexts. In this paper, we review what we are learning from experimental evolution with Tetrahymena about mutation, adaptation, and eco-evolutionary dynamics. We predict that future experimental evolution studies using Tetrahyemena will continue to shed new light on these processes.
more »
« less
- Award ID(s):
- 1911449
- PAR ID:
- 10321284
- Date Published:
- Journal Name:
- Microorganisms
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2076-2607
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Misteli, Tom (Ed.)Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, Tetrahymena thermophila, the cellular purpose of RNAi pathways that generate ∼23–24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23–24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants RSP1Δ, RDN2Δ, and RDF2Δ. In addition, RSP1Δ and RDN2Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in RSP1Δ and RDN2Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to Tetrahymena thermophila.more » « less
-
Abstract Understanding the mechanisms that generate genetic variation, and thus contribute to the process of adaptation, is a major goal of evolutionary biology. Mutation and genetic exchange have been well studied as mechanisms to generate genetic variation. However, there are additional factors, such as genome architecture, that may also impact the amount of genetic variation in some populations, and the extent to which these variation generating mechanisms are themselves shaped by natural selection is still an open question. To test the effect of genome architecture on the generation of genetic variation, and hence evolvability, we studied Tetrahymena thermophila, a ciliate with an unusual genome structure and mechanism of nuclear division, called amitosis, whereby homologous chromosomes are randomly distributed to daughter cells. Amitosis leads to genetic variation among the asexual descendants of a newly produced sexual progeny because different progeny cells will contain different combinations of parental alleles. We hypothesize that amitosis thus increases the evolvability of newly produced sexual progeny relative to their unmated parents and species that undergo mitosis. To test this hypothesis, we used experimental evolution and simulations to compare the rate of adaptation in T. thermophila populations founded by a single sexual progeny to parental populations that had not had sex in many generations. The populations founded by a sexual progeny adapted more quickly than parental populations in both laboratory populations and simulated populations. This suggests that the additional genetic variation generated by amitosis of a heterozygote can increase the rate of adaptation following sex and may help explain the evolutionary success of the unusual genetic architecture of Tetrahymena and ciliates more generally.more » « less
-
Abstract Opportunistic pathogens are environmental microbes that are generally harmless and only occasionally cause disease. Unlike obligate pathogens, the growth and survival of opportunistic pathogens do not rely on host infection or transmission. Their versatile lifestyles make it challenging to decipher how and why virulence has evolved in opportunistic pathogens. The coincidental evolution hypothesis postulates that virulence results from exaptation or pleiotropy, i.e. traits evolved for adaptation to living in one environment that have a different function in another. In particular, adaptation to avoid or survive protist predation has been suggested to contribute to the evolution of bacterial virulence (the training ground hypothesis). Here, we used experimental evolution to determine how the selective pressure imposed by a protist predator impacts the virulence and fitness of a ubiquitous environmental opportunistic bacterial pathogen that has acquired multidrug resistance: Serratia marcescens. To this aim, we evolved S. marcescens in the presence or absence of generalist protist predator, Tetrahymena thermophila. After 60 d of evolution, we evaluated genotypic and phenotypic changes by comparing evolved S. marcescens with the ancestral strain. Whole-genome shotgun sequencing of the entire evolved populations and individual isolates revealed numerous cases of parallel evolution, many more than statistically expected by chance, in genes associated with virulence. Our phenotypic assays suggested that evolution in the presence of a predator maintained virulence, whereas evolution in the absence of a predator resulted in attenuated virulence. We also found a significant correlation between virulence, biofilm formation, growth, and grazing resistance. Overall, our results provide evidence that bacterial virulence and virulence-related traits are maintained by selective pressures imposed by protist predation.more » « less
-
Abstract Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we use laboratory evolution to evaluate the activities of different split variants of theTetrahymena thermophilaribozyme. The best design delivers a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We further resolve a thermodynamic model to guide RENDR design, show how input signals can be transduced into diverse outputs, demonstrate portability across different bacteria, and use RENDR to detect antibiotic-resistant bacteria. This work shows how transcriptional signals can be monitored in situ and converted into different types of biochemical information using RNA synthetic biology.more » « less
An official website of the United States government

