Abstract Parker Solar Probe (PSP) observed predominately Alfvénic fluctuations in the solar wind near the Sun where the magnetic field tends to be radially aligned. In this paper, two magnetic-field-aligned solar wind flow intervals during PSP’s first two orbits are analyzed. Observations of these intervals indicate strong signatures of parallel/antiparallel-propagating waves. We utilize multiple analysis techniques to extract the properties of the observed waves in both magnetohydrodynamic (MHD) and kinetic scales. At the MHD scale, outward-propagating Alfvén waves dominate both intervals, and outward-propagating fast magnetosonic waves present the second-largest contribution in the spectral energy density. At kinetic scales, we identifymore »
This content will become publicly available on January 1, 2023
Strong Perpendicular Velocity-space Diffusion in Proton Beams Observed by Parker Solar Probe
Abstract The SWEAP instrument suite on Parker Solar Probe (PSP) has detected numerous proton beams associated with coherent, circularly polarized, ion-scale waves observed by PSP’s FIELDS instrument suite. Measurements during PSP Encounters 4−8 revealed pronounced complex shapes in the proton velocity distribution functions (VDFs), in which the tip of the beam undergoes strong perpendicular diffusion, resulting in VDF level contours that resemble a “hammerhead.” We refer to these proton beams, with their attendant “hammerhead” features, as the ion strahl. We present an example of these observations occurring simultaneously with a 7 hr ion-scale wave storm and show results from a preliminary attempt at quantifying the occurrence of ion-strahl broadening through three-component ion VDF fitting. We also provide a possible explanation of the ion perpendicular scattering based on quasilinear theory and the resonant scattering of beam ions by parallel-propagating, right circularly polarized, fast magnetosonic/whistler waves.
- Award ID(s):
- 1949802
- Publication Date:
- NSF-PAR ID:
- 10321299
- Journal Name:
- The Astrophysical Journal
- Volume:
- 924
- Issue:
- 2
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The ratio of the electric to magnetic form factors of the proton, μpGEp/GMp, has been measured for elastic electron-proton scattering with polarized beam and target up to four-momentum transfer squared Q2=5.66(GeV/c)2 using double spin asymmetry for target spin orientation aligned nearly perpendicular to the beam momentum direction. This measurement of μpGEp/GMp agrees with the Q2 dependence of previous recoil polarization data and reconfirms the discrepancy at high Q2 between the Rosenbluth and the polarization-transfer method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The form factor ratio at Q2=2.06(GeV/c)2 has been measured asmore »
-
Non-thermal electron distributions, such as beams of electrons, are found in many laboratory and astrophysical plasma sources and can produce anisotropic and polarized emission. Theories used to model the emission require sublevel specific analysis, which can be difficult to verify experimentally. Using two polarization-sensitive Johann-type crystal spectrometers at the National Institute of Standards and Technology (NIST) electron beam ion trap facility, we measured the linear polarization of well-known dielectronic recombination satellite transitions from Li-like Ar ions and two blended features from Be-like ions. The spectrometers observed the plasma at 90◦ relative to the electron beam propagation direction, and the crystalmore »
-
A bstract Understanding how sea quarks behave inside a nucleon is one of the most important physics goals of the proposed Electron-Ion Collider in China (EicC), which is designed to have a 3.5 GeV polarized electron beam (80% polarization) colliding with a 20 GeV polarized proton beam (70% polarization) at instantaneous luminosity of 2 × 10 33 cm − 2 s − 1 . A specific topic at EicC is to understand the polarization of individual quarks inside a longitudinally polarized nucleon. The potential of various future EicC data, including the inclusive and semi-inclusive deep inelastic scattering data from bothmore »
-
Abstract Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profoundmore »