skip to main content


Title: Computational design of thermoelectric alloys through optimization of transport and dopability
Alloying is a common technique to optimize the functional properties of materials for thermoelectrics, photovoltaics, energy storage etc. Designing thermoelectric (TE) alloys is especially challenging because it is a multi-property optimization problem, where the properties that contribute to high TE performance are interdependent. In this work, we develop a computational framework that combines first-principles calculations with alloy and point defect modeling to identify alloy compositions that optimize the electronic, thermal, and defect properties. We apply this framework to design n-type Ba 2(1− x ) Sr 2 x CdP 2 Zintl thermoelectric alloys. Our predictions of the crystallographic properties such as lattice parameters and site disorder are validated with experiments. To optimize the conduction band electronic structure, we perform band unfolding to sketch the effective band structures of alloys and find a range of compositions that facilitate band convergence and minimize alloy scattering of electrons. We assess the n-type dopability of the alloys by extending the standard approach for computing point defect energetics in ordered structures. Through the application of this framework, we identify an optimal alloy composition range with the desired electronic and thermal transport properties, and n-type dopability. Such a computational framework can also be used to design alloys for other functional applications beyond TE.  more » « less
Award ID(s):
2102409
NSF-PAR ID:
10321428
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Materials Horizons
Volume:
9
Issue:
2
ISSN:
2051-6347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Germanium telluride is a high performing thermoelectric material that additionally serves as a base for alloys such as GeTe–AgSbTe 2 and GeTe–PbTe. Such performance motivates exploration of other GeTe alloys in order understand the impact of site substitution on electron and phonon transport. In this work, we consider the root causes of the high thermoelectric performance material Ge 1− x Mn x Te. Along this alloy line, the crystal structure, electronic band structure, and electron and phonon scattering all depend heavily on the Mn content. Structural analysis of special quasirandom alloy structures indicate the thermodynamic stability of the rock salt phase over the rhombohedral phase with increased Mn incorporation. Effective band structure calculations indicate band convergence, the emergence of new valence band maxima, and strong smearing at the band edge with increased Mn content in both phases. High temperature measurements on bulk polycrystalline samples show a reduction in hole mobility and a dramatic increase in effective mass with respect to increasing Mn content. In contrast, synthesis as a function of tellurium chemical potential does not significantly impact electronic properties. Thermal conductivity shows a minimum near the rhombohedral to cubic phase transition, while the Mn Ge point defect scattering is weak as indicated by the low K L dependence on the Ge–Mn fraction (Fig. 10). From this work, alloys near this phase transition show optimal performance due to low thermal conductivity, moderate effective mass, and low scattering rates compared to Mn-rich compositions. 
    more » « less
  2. Abstract

    Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials.

     
    more » « less
  3. The full-Heusler VFe 2 Al has emerged as an important thermoelectric material in its thin film and bulk phases. VFe 2 Al is attractive for use as a thermoelectric materials because of it contains only low-cost, non-toxic and earth abundant elements. While VFe 2 Al has often been described as a semimetal, here we show the electronic and thermal properties of VFe 2 Al can be explained by considering VFe 2 Al as a valence precise semiconductor like many other thermoelectric materials but with a very small band gap ( E g = 0.03 ± 0.01 eV). Using a two-band model for electrical transport and point-defect scattering model for thermal transport we analyze the thermoelectric properties of bulk full-Heusler VFe 2 Al. We demonstrate that a semiconductor transport model can explain the compilation of data from a variety of n and p-type VFe 2 Al compositions assuming a small band-gap between 0.02 eV and 0.04 eV. In this small E g semiconductor understanding, the model suggests that nominally undoped VFe 2 Al samples appear metallic because of intrinsic defects of the order of ∼10 20 defects per cm −3 . We rationalize the observed trends in weighted mobilities ( μ w ) with dopant atoms from a molecular orbital understanding of the electronic structure. We use a phonon-point-defect scattering model to understand the dopant-concentration (and, therefore, the carrier-concentration) dependence of thermal conductivity. The electrical and thermal models developed allow us to predict the zT versus carrier concentration curve for this material, which maps well to reported experimental investigations. 
    more » « less
  4. Diamond like semiconductors (DLS) have emerged as candidates for thermoelectric energy conversion. Towards understanding and optimizing performance, we present a comprehensive investigation of the electronic properties of two DLS phases, quaternary Cu 2 HgGeTe 4 and related ordered vacancy compound Hg 2 GeTe 4 , including thermodynamic stability, defect chemistry, and transport properties. To establish the thermodynamic link between the related but distinct phases, the stability region for both is visualized in chemical potential space. In spite of their similar structure and bonding, we show that the two materials exhibit reciprocal behaviors for dopability. Cu 2 HgGeTe 4 is degenerately p-type in all environments despite its wide stability region, due to the presence of low-energy acceptor defects V Cu and Cu Hg and is resistant to extrinsic n-type doping. Meanwhile Hg 2 GeTe 4 has a narrow stability region and intrinsic behavior due to the relatively high formation energy of native defects, but presents an opportunity for bi-polar doping. While these two compounds have similar structure, bonding, and chemical constituents, the reciprocal nature of their dopability emerges from significant differences in band edge positions. A Brouwer band diagram approach is utilized to visualize the role of native defects on carrier concentrations, dopability, and transport properties. This study elucidates the doping asymmetry between two solid-solution forming DLS phases Cu 2 HgGeTe 4 and Hg 2 GeTe 4 by revealing the defect chemistry of each compound, and suggests design strategies for defect engineering of DLS phases. 
    more » « less
  5. It has been challenging to synthesize p-type SnOx(1≤x<2) and engineer the electrical properties such as carrier density and mobility due to the narrow processing window and the localized oxygen 2p orbitals near the valence band.

    We recently reported on the processing of p-type SnOx and an oxide-based p-n heterostructures, demonstrating high on/off rectification ratio (>103), small turn-on voltage (<0.5 V), and low saturation current (~1×10-10A)1. In order to further understand the p-type oxide and engineer the properties for various electronic device applications, it is important to identify (or establish) the dominating doping and transport mechanisms. The low dopability in p-type SnOx, of which the causation is also closely related to the narrow processing window, needs to be mitigated so that the electrical properties of the material are to be adequately engineered2, 3.

    Herein, we report on the multifunctional encapsulation of p-SnOxto limit the surface adsorption of oxygen and selectively permeate hydrogen into the p-SnOxchannel for thin film transistor (TFT) applications. Time-of-flight secondary ion mass spectrometry measurements identified that ultra-thin SiO2as a multifunctional encapsulation layer effectively suppressed the oxygen adsorption on the back channel surface of p-SnOxand augmented hydrogen density across the entire thickness of the channel. Encapsulated p-SnOx-based TFTs demonstrated much-enhanced channel conductance modulation in response to the gate bias applied, featuring higher on-state current and lower off-state current. The relevance between the TFT performance and the effects of oxygen suppression and hydrogen permeation is discussed in regard to the intrinsic and extrinsic doping mechanisms. These results are supported by density-functional-theory calculations.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. K.N. was supported by Basic Science Research Program (NRF-2021R11A1A01051246) through the NRF Korea funded by the Ministry of Education.

    References

    Lee, D. H.; Park, H.; Clevenger, M.; Kim, H.; Kim, C. S.; Liu, M.; Kim, G.; Song, H. W.; No, K.; Kim, S. Y.; Ko, D.-K.; Lucietto, A.; Park, H.; Lee, S., High-Performance Oxide-Based p–n Heterojunctions Integrating p-SnOx and n-InGaZnO.ACS Applied Materials & Interfaces2021,13(46), 55676-55686.

    Hautier, G.; Miglio, A.; Ceder, G.; Rignanese, G.-M.; Gonze, X., Identification and design principles of low hole effective mass p-type transparent conducting oxides.Nat Commun2013,4.

    Yim, K.; Youn, Y.; Lee, M.; Yoo, D.; Lee, J.; Cho, S. H.; Han, S., Computational discovery of p-type transparent oxide semiconductors using hydrogen descriptor.npj Computational Materials2018,4(1), 17.

    Figure 1

     

    more » « less