The geology of the Schroeder Hill region near the head of the Shackleton Glacier, central Transantarctic Mountains, consists of Triassic Fremouw Formation and overlying Falla Formation strata intruded by Jurassic Ferrar Dolerite sills. At ‘Alfie’s Elbow', south-east of Schroeder Hill, upper Fremouw strata are overlain by Upper Cenozoic Sirius Group deposits. These upper Fremouw beds differ from all other examined upper Fremouw strata in the Shackleton Glacier region in being carbonaceous. Quartz-pebble conglomerate characterizes the basal Falla beds, emphasizing a change in provenance. Sirius Group beds occur as a stratigraphic succession draped on modern topography and as structureless sand wedged in modern microtopography. Fremouw beds locally are arched with the fold axis approximately parallel to regional normal faulting related to the uplift and formation of the Transantarctic Mountains.
more »
« less
A mass transport deposit in the Permian Mackellar Formation, Victoria Group, Antarctica
The Permian Mackellar Formation in the central Transantarctic Mountains is a fine-grained siliciclastic succession, which was deposited in a marine to brackish inland sea (Mackellar Sea) along the hinterland of the Gondwana margin. The Mackellar strata were deposited in an elongate, trough-shaped basin oriented subparallel to the present trend of the Transantarctic Mountains. At the head of the Robb Glacier, the Mackellar beds include, in the middle of the succession, a mass transport deposit, which exhibits folding and thrusting. Structural data (e.g. facing direction and axial planes of overturned folds, orientation and vergence of thrust faults) indicate axial transport down the elongate depositional basin. Unconformable relationships to strata overlying the mass transport deposit suggest reactivation and doming of the deposit following its initial emplacement. Subsequently there was partial collapse of the toe-ward part of the extant deposit along a listric fault, the result of loading by deltaic sandstones of the overlying Fairchild Formation
more »
« less
- PAR ID:
- 10321447
- Date Published:
- Journal Name:
- New Zealand Journal of Geology and Geophysics
- ISSN:
- 0028-8306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Oceanic plateaus are common in modern oceanic basins and will ultimately collide with continental subduction zones. Despite the frequency of these events, complete sedimentary records of oceanic plateau collision and accretion have remained limited to only a few Cenozoic examples with excellent exposure and tectonic context. Our study focuses on building a stratigraphic record of plateau collision using the sedimentary strata deposited on the Siletzia oceanic plateau, which accreted to the Pacific Northwest at ca. 50 Ma. By combining previously published provenance and stratigraphic data with new lithofacies and geologic mapping, measured stratigraphic sections, conglomerate clast counts, and U-Pb zircon geochronology, we were able to divide the strata of the northern Olympic Peninsula in Washington, USA, into precollisional, syn-collisional, and postcollisional stages. Precollisional strata include early Eocene deep-marine hemipelagic to pelagic mudstones of the Aldwell Formation that were deposited directly on Siletzia basalts. These strata were deformed during collision and are separated from the overlying syn-collisional middle Eocene sandstone and conglomerate of the marine (?) Lyre Formation by an angular unconformity. Postcollisional strata were deposited by submarine fans and include interbedded sandstone and siltstone of the Hoko River and Makah formations. These units initially record the filling of isolated trench-slope basins by late Eocene time before eventual integration into an Oligocene regional forearc basin as the accreted Siletzia plateau began to subside. Our chronostratigraphy permits the correlation of basin strata across tectonic domains and provides more general insight into how forearc sedimentary systems evolve following the accretion of a young, buoyant oceanic plateau.more » « less
-
Abstract The Manantiales basin contains >4 km of nonmarine sedimentary strata that accumulated at 31.75–32.5°S during construction of the High Andes. We report field and analytical data from the underexplored northern portion of this basin. The basin contains upper Eocene–middle Miocene strata that accumulated in back‐bulge or distal foredeep through inner‐wedge‐top depozones of the Andean foreland basin as it migrated through this region. A revised accumulation history for the basin‐filling Río de los Patos and Chinches Formations supports a regional pattern of flexure in front of an east‐vergent orogenic wedge. The former formation consists of eolian and localized fluviolacustrine deposits which accumulated between ca. 38 Ma and ≤34 Ma during thrust belt development in Chile. A subsequent ≤12 Myr hiatus may reflect passage of the flexural forebulge or cessation of subsidence during orogenic quiescence. The overlying Chinches Formation records a transition from the foredeep to wedge‐top depozones. Foredeep deposits of east‐flowing, meandering streams were incised prior to ca. 18 Ma, after which deposits of axial rivers, playas, and perennial lakes ponded in a depression behind orogenic topography to the east. After ca. 15 Ma, alluvial‐fan deposits were syndepositionally deformed adjacent to growing thrust‐belt structures along the western basin margin. Although the basin record supports a westward step in the locus of deformation during Early–Middle Miocene time, it conflicts with models involving west‐vergence of the orogenic wedge. Rather, this pattern can be explained as out‐of‐sequence deformation alternating with wedge forward propagation, consistent with Coulomb wedge models incorporating syntectonic sedimentation.more » « less
-
ABSTRACT The currently favored hypothesis for Late Paleozoic Ice Age glaciations is that multiple ice centers were distributed across Gondwana and that these ice centers grew and shank asynchronously. Recent work has suggested that the Transantarctic Basin has glaciogenic deposits and erosional features from two different ice centers, one centered on the Antarctic Craton and another located over Marie Byrd Land. To work towards an understanding of LPIA glaciation that can be tied to global trends, these successions must be understood on a local level before they can be correlated to basinal, regional, or global patterns. This study evaluates the sedimentology, stratigraphy, and flow directions of the glaciogenic, Asselian–Sakmarian (Early Permian) Pagoda Formation from four localities in the Shackleton Glacier region of the Transantarctic Basin to characterize Late Paleozoic Ice Age glaciation in a South Polar, basin-marginal setting. These analyses show that the massive, sandy, clast-poor diamictites of the Pagoda Fm were deposited in a basin-marginal subaqueous setting through a variety of glaciogenic and glacially influenced mechanisms in a depositional environment with depths below normal wave base. Current-transported sands and stratified diamictites that occur at the top of the Pagoda Fm were deposited as part of grounding-line fan systems. Up to at least 100 m of topographic relief on the erosional surface underlying the Pagoda Fm strongly influenced the thickness and transport directions in the Pagoda Fm. Uniform subglacial striae orientations across 100 m of paleotopographic relief suggest that the glacier was significantly thick to “overtop” the paleotopography in the Shackleton Glacier region. This pattern suggests that the glacier was likely not alpine, but rather an ice cap or ice sheet. The greater part of the Pagoda Fm in the Shackleton Glacier region was deposited during a single retreat phase. This retreat phase is represented by a single glacial depositional sequence that is characteristic of a glacier with a temperate or mild subpolar thermal regime and significant meltwater discharge. The position of the glacier margin likely experienced minor fluctuations (readvances) during this retreat. Though the sediment in the Shackleton Glacier region was deposited during a single glacier retreat phase, evidence from this study does not preclude earlier or later glacier advance–retreat cycles preserved elsewhere in the basin. Ice flow directions indicate that the glacier responsible for this sedimentation was likely flowing off of an upland on the side of the Transantarctic Basin closer to the Panthalassan–Gondwanide margin (Marie Byrd Land), which supports the hypothesis that two different ice centers contributed glaciogenic sediments to the Transantarctic Basin. Together, these observations and interpretations provide a detailed local description of Asselian–Sakmarian glaciation in a South Polar setting that can be used to understand larger-scale patterns of regional and global climate change during the Late Paleozoic Ice Age.more » « less
-
Abstract Subaqueous mass‐transport processes are one of the mechanisms for transport of sediment into the deep sea. Internal structures and depositional processes of carbonate mass‐transport deposits are relatively poorly understood relative to siliciclastic facies due to their comparative paucity in the rock record. A variety of carbonate mass‐transport deposits, including slumps, debrites and deep‐channel‐confined density flow deposits, occur in Middle–Upper Ordovician slope deposits in western Inner Mongolia (Wuhai), China. These provide a rare opportunity to illustrate the emplacement history of carbonate mass‐transport deposits at the outcrop scale. The slumps and debrites host remarkable folds, chaotic beds and imbricated beds that reflect differences in both rheology and position on the slope. Individual slump sheets show gradations between undulating laminae, inclined and recumbent folds, highly deformed folds, and chaotic textures upslope from the toe region. Debrites are commonly interbedded with slump deposits, whereas imbricated beds are present in the middle and lower parts of the toes of slump sheets near the terminal wall. In the study area, thin‐bedded limestone with slump deposits of the Kelimoli Formation are overlain by fine‐grained, siliciclastic‐dominated, slope deposits of the Wulalike Formation. A thick breccia of the Wulalike Formation was deposited in a main feeder channel in south‐east Wuhai, but to the west‐north‐west the breccia was deposited in distributary channels possibly represented as a unique lower‐slope pattern of gullies. At the latter locality, the breccia was deposited solely within the channels on a steep west‐north‐west dipping slope under density‐driven flows. The mass‐transport deposits documented herein records passive to foreland basin tectonic transitions, and associated platform foundering and steepening of the slope. A slope facies model was constructed to demonstrate the spatial and temporal variations of mass‐transport deposits during basin evolution, and as such it provides a template for the interpretation of the deposits of ancient slopes that underwent passive to active tectonic transitions.more » « less
An official website of the United States government

