The Permian Mackellar Formation in the central Transantarctic Mountains is a fine-grained siliciclastic succession, which was deposited in a marine to brackish inland sea (Mackellar Sea) along the hinterland of the Gondwana margin. The Mackellar strata were deposited in an elongate, trough-shaped basin oriented subparallel to the present trend of the Transantarctic Mountains. At the head of the Robb Glacier, the Mackellar beds include, in the middle of the succession, a mass transport deposit, which exhibits folding and thrusting. Structural data (e.g. facing direction and axial planes of overturned folds, orientation and vergence of thrust faults) indicate axial transport down the elongate depositional basin. Unconformable relationships to strata overlying the mass transport deposit suggest reactivation and doming of the deposit following its initial emplacement. Subsequently there was partial collapse of the toe-ward part of the extant deposit along a listric fault, the result of loading by deltaic sandstones of the overlying Fairchild Formation
more »
« less
Middle Ordovician mass‐transport deposits from western Inner Mongolia, China: Mechanisms and implications for basin evolution
Abstract Subaqueous mass‐transport processes are one of the mechanisms for transport of sediment into the deep sea. Internal structures and depositional processes of carbonate mass‐transport deposits are relatively poorly understood relative to siliciclastic facies due to their comparative paucity in the rock record. A variety of carbonate mass‐transport deposits, including slumps, debrites and deep‐channel‐confined density flow deposits, occur in Middle–Upper Ordovician slope deposits in western Inner Mongolia (Wuhai), China. These provide a rare opportunity to illustrate the emplacement history of carbonate mass‐transport deposits at the outcrop scale. The slumps and debrites host remarkable folds, chaotic beds and imbricated beds that reflect differences in both rheology and position on the slope. Individual slump sheets show gradations between undulating laminae, inclined and recumbent folds, highly deformed folds, and chaotic textures upslope from the toe region. Debrites are commonly interbedded with slump deposits, whereas imbricated beds are present in the middle and lower parts of the toes of slump sheets near the terminal wall. In the study area, thin‐bedded limestone with slump deposits of the Kelimoli Formation are overlain by fine‐grained, siliciclastic‐dominated, slope deposits of the Wulalike Formation. A thick breccia of the Wulalike Formation was deposited in a main feeder channel in south‐east Wuhai, but to the west‐north‐west the breccia was deposited in distributary channels possibly represented as a unique lower‐slope pattern of gullies. At the latter locality, the breccia was deposited solely within the channels on a steep west‐north‐west dipping slope under density‐driven flows. The mass‐transport deposits documented herein records passive to foreland basin tectonic transitions, and associated platform foundering and steepening of the slope. A slope facies model was constructed to demonstrate the spatial and temporal variations of mass‐transport deposits during basin evolution, and as such it provides a template for the interpretation of the deposits of ancient slopes that underwent passive to active tectonic transitions.
more »
« less
- Award ID(s):
- 1849968
- PAR ID:
- 10446467
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Sedimentology
- Volume:
- 69
- Issue:
- 3
- ISSN:
- 0037-0746
- Format(s):
- Medium: X Size: p. 1301-1338
- Size(s):
- p. 1301-1338
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Ediacaran-Cambrian transition interval is described for the west part of the Gondwana Supercontinent. This key interval in Earth’s history is recorded in the upper and lower part of the Tagatiya Guazú and Cerro Curuzu formations, Itapucumi Group, Paraguay, encompassing a sedimentary succession deposited in a tidally influenced mixed carbonate-siliciclastic ramp. The remarkable presence of cosmopolitan Ediacaran shelly fossils and treptichnids, which are recorded in carbonate and siliciclastic deposits, respectively, suggests their differential preservation according to lithology. Their distribution is conditioned by substrate changes that are related to cyclic sedimentation. The associated positive steady trend of the δ13C values in the carbonate facies indicates that the Tagatiya Guazú succession is correlated to the late Ediacaran positive carbon isotope plateau. Sensitive high-resolution ion microprobe U-Pb ages of volcanic zircons from an ash bed ∼30 m above the fossil-bearing interval in the Cerro Curuzu Formation indicate an Early Cambrian (Fortunian) depositional age of 535.7 ± 5.2 Ma. As in other coeval sedimentary successions worldwide, the co-occurrence of typical Ediacaran skeletal taxa and relatively complex trace fossils in the studied strata highlights the global nature of key evolutionary innovations.more » « less
-
Cambrian–Devonian sedimentary rocks of the northern Canadian Cordillera record both the establishment and demise of the Great American Carbonate Bank, a widespread carbonate platform system that fringed the ancestral continental margins of North America (Laurentia). Here, we present a new examination of the deep-water Road River Group of the Richardson Mountains, Yukon, Canada, which was deposited in an intra-platformal embayment or seaway within the Great American Carbonate Bank called the Richardson trough. Eleven detailed stratigraphic sections through the Road River Group along the upper canyon of the Peel River are compiled and integrated with geological mapping, facies analysis, carbonate and organic carbon isotope chemostratigraphy, and new biostratigraphic results to formalize four new formations within the type area of the Richardson Mountains (Cronin, Mount Hare, Tetlit, and Vittrekwa). We recognize nine mixed carbonate and siliciclastic deep-water facies associations in the Road River Group and propose these strata were deposited in basin-floor to slope environments. New biostratigraphic data suggest the Road River Group spans the late Cambrian (Furongian) – Middle Devonian (Eifelian), and new chemostratigraphic data record multiple global carbon isotopic events, including the late Cambrian Steptoean positive carbon isotope excursion, the Late Ordovician Guttenberg excursion, the Silurian Aeronian, Valgu, Mulde (mid-Homerian), Ireviken (early Sheinwoodian), and Lau excursions, and the Early Devonian Klonk excursion. Together, these new data not only help clarify nomenclatural debate centered around the Road River Group, but also provide critical new sedimentological, biostratigraphic, and isotopic data for these widely distributed rocks of the northern Canadian Cordillera.more » « less
-
Abstract Until recently, information about the end of the Cretaceous was based upon investigation of global outcrop sections. New subsurface drilling and characterization from well cores and logs in the Gulf of Mexico Basin have greatly illuminated the end Cretaceous event. However, the palaeogeography of the late Maastrichtian just prior to bolide impact is less well understood and is of great importance in terms of modelling the resulting distribution and composition of the Chicxulub impact material, as well as tsunami and seiche wave height. Here, we examine the Maastrichtian strata in the basin, synthesizing lithostratigraphy and chronostratigraphy, tectonic plate reconstructions, global and local sea level history, palaeoclimate and depositional systems. Our new Maastrichtian palaeogeographical reconstruction shows the basin prior to the Chicxulub impact at a time of globally high sea level, with widespread deposition of deepwater chalks and shallow marine carbonates and local siliciclastic shorelines fed by the nascent Cordilleran belt. Stratigraphic correlations of wells and outcrops illustrate the range of palaeoenvironments from coastal plain to deep marine. As much as 610 m (2000 ft) of Maastrichtian and Campanian section is mapped around the basin, reflecting accommodation provided by basin subsidence, salt deflation and palaeophysiography. A large thickness of carbonates accumulated in the basin centre, with steep shoreline to basin gradients particularly in Mexico. At the end of the Cretaceous, carbonate palaeoenvironments probably covered 96% of the Gulf of Mexico Basin, with less than 4% of the area likely occupied by siliciclastic systems, a distribution that evolved from the Early Cretaceous. Our maps thus explain dominance of carbonate breccia and chalks in K–Pg boundary units deposited over the basin sites proximal or distal to the Chicxulub impact crater. This also elucidates the large impedance contrast and high amplitude seismic response of the K–Pg boundary horizon, mappable over vast portions of the basin.more » « less
-
The Indian (southwest) summer monsoon is one of the most intense climatic phenomena on Earth, with its long-term development possibly linked to the growth of high topography in South and Central Asia. The Indian continental margin, adjoining the Arabian Sea, offers a unique opportunity to investigate tectonic–climatic interactions and the net impact of these processes on weathering and erosion of the western Himalaya. During International Ocean Discovery Program Expedition 355, two sites were drilled in Laxmi Basin in the eastern Arabian Sea to document the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. In addition, recovering basement from the eastern Arabian Sea provides constraints on the early rifting history of the western continental margin of India with special emphasis on continental breakup between India and the Seychelles and its relationship to the plume-related volcanism of the Deccan Plateau. A major submarine fan probably draining the western Himalaya and Karakoram must have been supplying sediment to the eastern Arabian Sea since at least ~17 Ma. Sand mineral assemblages indicate that the Greater Himalayan Crystalline Sequence was fully exposed to the surface by this time. Most of the recovered sediment appears to be derived from the Indus River and includes minerals that are unique to the Indus Suture Zone, in particular glaucophane and hypersthene, most likely originating from the structural base of the Kohistan arc (i.e., within the Indus Suture Zone). Pliocene sandy intervals at Site U1456 were deposited in lower fan “sheet lobe” settings, with intervals of basin–plain turbidites separated by hemipelagic muddy sections deposited during the Miocene. Site U1457 is more distal in facies, reflecting its more marginal setting. No major active lobe appears to have affected Laxmi Basin since the late early Pleistocene (~1.2–1.5 Ma). We succeeded in recovering sections spanning the 8 Ma climatic transition, when monsoon intensity is believed to have changed strongly, although the nature of this change awaits postcruise analysis. We also recovered sediment from large mass transport deposits measuring ~330 and ~190 m thick at Sites U1456 and U1457, respectively. These sections include an upper sequence of slump-folded muddy and silty rocks, as well as underlying calcarenites and limestone breccias, together with smaller amounts of volcanic clasts, all of which are likely derived from the western Indian continental shelf. Identification of similar facies on the regional seismic lines in Laxmi Basin suggests that these deposits form parts of one of the world’s largest mass transport deposits. Coring of igneous basement was achieved at Site U1457. Recovery of massive basalt and associated volcaniclastic sediment at this site should address the key questions related to rifting and volcanism associated with formation of Laxmi Basin. Geochemical analysis indicates that these are low-K, high-Mg subalkaline tholeiitic basalts and do not represent a typical mid-ocean-ridge basalt. Other observations made at the two sites during Expedition 355 provide vital constraints on the rift history of this margin. Heat flow measurements at the two drill sites were calculated to be ~57 and ~60 mW/m2. Such heat flow values are compatible with those observed in average oceanic crust of 63–84 Ma age, as well as with the presence of highly extended continental crust. Postcruise analyses of the more than ~1722 m of core will provide further information about the nature of tectonic–climatic interactions in this global type area for such studies.more » « less
An official website of the United States government
