skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal expansivity, heat capacity and bulk modulus of the mantle
SUMMARY We derive exact expressions for the thermal expansivity, heat capacity and bulk modulus for assemblages with arbitrarily large numbers of components and phases, including the influence of phase transformations and chemical exchange. We illustrate results in simple two-component, two-phase systems, including Mg–Fe olivine-wadsleyite and Ca–Mg clinopyroxene-orthopyroxene and for a multicompontent model of mantle composition in the form of pyrolite. For the latter we show results for the thermal expansivity and heat capacity over the entire mantle pressure–temperature regime to 40 GPa, or a depth of 1000 km. From the thermal expansivity, we derive a new expression for the phase buoyancy parameter that is valid for arbitrarily large numbers of phases and components and which is defined at every point in pressure–temperature space. Results reveal regions of the mantle where the magnitude of the phase buoyancy parameter is larger in magnitude than for those phase transitions that are most commonly included in mantle convection simulations. These regions include the wadsleyite to garnet and ferropericlase transition, which is encountered along hot isentropes (e.g. 2000 K potential temperature) in the transition zone, and the ferropericlase and stishovite to bridgmanite transition, which is encountered along cold isentropes (e.g. 1000 K potential temperature) in the shallow lower mantle. We also show the bulk modulus along a typical mantle isentrope and relate it to the Bullen inhomogeneity parameter. All results are computed with our code HeFESTo, updates and improvements to which we discuss, including the implementation of the exact expressions for the thermal expansivity, heat capacity and bulk modulus, generalization to allow for pressure dependence of non-ideal solution parameters and an improved numerical scheme for minimizing the Gibbs free energy. Finally, we present the results of a new global inversion of parameters updated to incorporate more recent results from experiment and first principles theory, as well as a new phase (nal phase), and new species: Na-majorite and the NaAlO2 end-member of ferropericlase.  more » « less
Award ID(s):
1853388
PAR ID:
10321503
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Geophysical Journal International
Volume:
228
Issue:
2
ISSN:
0956-540X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mineral phase transitions can either hinder or accelerate mantle flow. In the present day, the formation of the bridgmanite + ferropericlase assemblage from ringwoodite at 660 km depth has been found to cause weak and intermittent layering of mantle convection. However, for the higher temperatures in Earth's past, different phase transitions could have controlled mantle dynamics. We investigate the potential changes in convection style during Earth's secular cooling using a new numerical technique that reformulates the energy conservation equation in terms of specific entropy instead of temperature. This approach enables us to accurately include the latent heat effect of phase transitions for mantle temperatures different from the average geotherm, and therefore fully incorporate the thermodynamic effects of realistic phase transitions in global‐scale mantle convection modeling. We set up 2‐D models with the geodynamics softwareAspect, using thermodynamic properties computed by HeFESTo, while applying a viscosity profile constrained by the geoid and mineral physics data and a visco‐plastic rheology to reproduce plate‐like behavior and Earth‐like subduction morphologies. Our model results reveal the layering of plumes induced by the wadsleyite to garnet (majorite) + ferropericlase endothermic transition (between 450 and 590 km depth and over the 2000–2500 K temperature range). They show that this phase transition causes a large‐scale and long‐lasting temperature elevation in a depth range of 500–650 km depth if the potential temperature of the mantle is higher than 1800 K, indicating that mantle convection may have been partially layered in Earth's early history. 
    more » « less
  2. Abstract The mantle transition zone connects two major layers of Earth’s interior that may be compositionally distinct: the upper mantle and the lower mantle. Wadsleyite is a major mineral in the upper mantle transition zone. Here, we measure the single-crystal elastic properties of hydrous Fe-bearing wadsleyite at high pressure-temperature conditions by Brillouin spectroscopy. Our results are then used to model the global distribution of wadsleyite proportion, temperature, and water content in the upper mantle transition zone by integrating mineral physics data with global seismic observations. Our models show that the upper mantle transition zone near subducted slabs is relatively cold, enriched in wadsleyite, and slightly more hydrated compared to regions where plumes are expected. This study provides direct evidence for the thermochemical heterogeneities in the upper mantle transition zone which is important for understanding the material exchange processes between the upper and lower mantle. 
    more » « less
  3. null (Ed.)
    Abstract Calcium carbonate (CaCO3) is one of the most abundant carbonates on Earth's surface and transports carbon to Earth's interior via subduction. Although some petrological observations support the preservation of CaCO3 in cold slabs to lower mantle depths, the geophysical properties and stability of CaCO3 at these depths are not known, due in part to complicated polymorphic phase transitions and lack of constraints on thermodynamic properties. Here we measured thermal equation of state of CaCO3-Pmmn, the stable polymorph of CaCO3 through much of the lower mantle, using synchrotron X-ray diffraction in a laser-heated diamond-anvil cell up to 75 GPa and 2200 K. The room-temperature compression data for CaCO3-Pmmn are fit with third-order Birch-Murnaghan equation of state, yielding KT0 = 146.7 (±1.9) GPa and K′0 = 3.4(±0.1) with V0 fixed to the value determined by ab initio calculation, 97.76 Å3. High-temperature compression data are consistent with zero-pressure thermal expansion αT = a0 + a1T with a0 = 4.3(±0.3)×10-5 K-1, a1 = 0.8(±0.2)×10-8 K-2, temperature derivative of the bulk modulus (∂KT/∂T)P = –0.021(±0.001) GPa/K; the Grüneisen parameter γ0 = 1.94(±0.02), and the volume independent constant q = 1.9(±0.3) at a fixed Debye temperature θ0 = 631 K predicted via ab initio calculation. Using these newly determined thermodynamic parameters, the density and bulk sound velocity of CaCO3-Pmmn and (Ca,Mg)-carbonate-bearing eclogite are quantitatively modeled from 30 to 80 GPa along a cold slab geotherm. With the assumption that carbonates are homogeneously mixed into the slab, the results indicate the presence of carbonates in the subducted slab is unlikely to be detected by seismic observations, and the buoyancy provided by carbonates has a negligible effect on slab dynamics. 
    more » « less
  4. Abstract In this study, we have investigated the crystal structure and equation of state of tetragonal CaSiO3-perovskite up to 200 GPa using synchrotron X-ray diffraction in laser-heated diamond-anvil cells. X-ray diffraction patterns of the quenched CaSiO3-perovskite above 148 GPa clearly show that 200, 211, and 220 peaks of the cubic phase split into 004+220, 204+312, and 224+400 peak pairs, respectively, in the tetragonal structure, and their calculated full-width at half maximum (FWHM) exhibits a substantial increase with pressure. The distribution of diffraction peaks suggests that the tetragonal CaSiO3-perovskite most likely has an I4/mcm space group at 300 K between 148 and 199 GPa, although other possibilities might still exist. Using the Birch-Murnaghan equations, we have determined the equation of state of tetragonal CaSiO3-perovskite, yielding the bulk modulus K0T = 227(21) GPa with the pressure derivative of the bulk modulus, K0T′ = 4.0(3). Modeled sound velocities at 580 K and around 50 GPa using our results and literature values show the difference in the compressional (VP) and shear-wave velocity (VS) between the tetragonal and cubic phases to be 5.3 and 6.7%, respectively. At ~110 GPa and 1000 K, this phase transition leads to a 4.3 and 9.1% jump in VP and VS, respectively. Since the addition of Ti can elevate the transition temperature, the transition from the tetragonal to cubic phase may have a seismic signature compatible with the observed mid-lower mantle discontinuity around the cold subduction slabs, which needs to be explored in future studies. 
    more » « less
  5. Abstract Silicate liquids are important agents of thermal evolution, yet their thermal conductivity is largely unknown. Here, we determine the thermal conductivity of a silicate liquid by combining the Green‐Kubo method with a machine learning potential ofab initioquality over the entire pressure regime of the mantle. We find that the thermal conductivity of MgSiO3liquid is 1.1 W m−1 K−1at the 1 bar melting point, and 4.0 W m−1 K−1at core‐mantle boundary conditions. The thermal conductivity increases with compression, while remaining nearly constant on isochoric heating. The pressure dependence arises from the increasing bulk modulus on compression, and the weak temperature dependence arises from the saturation of the phonon mean free path due to structural disorder. The thermal conductivity of silicate liquids is less than that of ambient mantle, a contrast that may be important for understanding melt generation, and heat flux from the core. 
    more » « less