skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Projection-free nonconvex stochastic optimization on Riemannian manifolds
Abstract We study stochastic projection-free methods for constrained optimization of smooth functions on Riemannian manifolds, i.e., with additional constraints beyond the parameter domain being a manifold. Specifically, we introduce stochastic Riemannian Frank–Wolfe (Fw) methods for nonconvex and geodesically convex problems. We present algorithms for both purely stochastic optimization and finite-sum problems. For the latter, we develop variance-reduced methods, including a Riemannian adaptation of the recently proposed Spider technique. For all settings, we recover convergence rates that are comparable to the best-known rates for their Euclidean counterparts. Finally, we discuss applications to two classic tasks: the computation of the Karcher mean of positive definite matrices and Wasserstein barycenters for multivariate normal distributions. For both tasks, stochastic Fw methods yield state-of-the-art empirical performance.  more » « less
Award ID(s):
1846088
PAR ID:
10321554
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to the case where the objective function is nonsmooth. In this paper, we present two Riemannian stochastic proximal gradient methods for minimizing nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO) complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm finds an ϵ -stationary point with O(ϵ−3) IFOs in the online case, and O(n+n‾√ϵ−2) IFOs in the finite-sum case with n being the number of summands in the objective. Experimental results on online sparse PCA and robust low-rank matrix completion show that our proposed methods significantly outperform the existing methods that use Riemannian subgradient information. 
    more » « less
  2. We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problems with only noisy objective function evaluations. Toward this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of nonlinearity of the manifold constraint and issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and nonsmooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of ϵ-stationary point or ϵ-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks. 
    more » « less
  3. From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. [2022] have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative—we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemanian gradient ascent descent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold. 
    more » « less
  4. Stochastic (sub)gradient methods require step size schedule tuning to perform well in practice. Classical tuning strategies decay the step size polynomially and lead to optimal sublinear rates on (strongly) convex problems. An alternative schedule, popular in nonconvex optimization, is called geometric step decay and proceeds by halving the step size after every few epochs. In recent work, geometric step decay was shown to improve exponentially upon classical sublinear rates for the class of sharp convex functions. In this work, we ask whether geometric step decay similarly improves stochastic algorithms for the class of sharp weakly convex problems. Such losses feature in modern statistical recovery problems and lead to a new challenge not present in the convex setting: the region of convergence is local, so one must bound the probability of escape. Our main result shows that for a large class of stochastic, sharp, nonsmooth, and nonconvex problems a geometric step decay schedule endows well-known algorithms with a local linear (or nearly linear) rate of convergence to global minimizers. This guarantee applies to the stochastic projected subgradient, proximal point, and prox-linear algorithms. As an application of our main result, we analyze two statistical recovery tasks—phase retrieval and blind deconvolution—and match the best known guarantees under Gaussian measurement models and establish new guarantees under heavy-tailed distributions. 
    more » « less
  5. Large-scale optimization problems abound in data mining and machine learning applications, and the computational challenges they pose are often addressed through parallelization. We identify structural properties under which a convex optimization problem can be massively parallelized via map-reduce operations using the Frank–Wolfe (FW) algorithm. The class of problems that can be tackled this way is quite broad and includes experimental design, AdaBoost, and projection to a convex hull. Implementing FW via map-reduce eases parallelization and deployment via commercial distributed computing frameworks. We demonstrate this by implementing FW over Spark, an engine for parallel data processing, and establish that parallelization through map-reduce yields significant performance improvements: We solve problems with 20 million variables using 350 cores in 79 min; the same operation takes 48 h when executed serially. 
    more » « less