skip to main content

Title: Hybrid FES-exoskeleton control: Using MPC to distribute actuation for elbow and wrist movements

Individuals who have suffered a cervical spinal cord injury prioritize the recovery of upper limb function for completing activities of daily living. Hybrid FES-exoskeleton systems have the potential to assist this population by providing a portable, powered, and wearable device; however, realization of this combination of technologies has been challenging. In particular, it has been difficult to show generalizability across motions, and to define optimal distribution of actuation, given the complex nature of the combined dynamic system.


In this paper, we present a hybrid controller using a model predictive control (MPC) formulation that combines the actuation of both an exoskeleton and an FES system. The MPC cost function is designed to distribute actuation on a single degree of freedom to favor FES control effort, reducing exoskeleton power consumption, while ensuring smooth movements along different trajectories. Our controller was tested with nine able-bodied participants using FES surface stimulation paired with an upper limb powered exoskeleton. The hybrid controller was compared to an exoskeleton alone controller, and we measured trajectory error and torque while moving the participant through two elbow flexion/extension trajectories, and separately through two wrist flexion/extension trajectories.


The MPC-based hybrid controller showed a reduction in sum of squared torques by an average of 48.7 and 57.9% on the elbow flexion/extension and wrist flexion/extension joints respectively, with only small differences in tracking accuracy compared to the exoskeleton alone.


To realize practical implementation of hybrid FES-exoskeleton systems, the control strategy requires translation to multi-DOF movements, achieving more consistent improvement across participants, and balancing control to more fully leverage the muscles' capabilities.

more » « less
Award ID(s):
2025130 2025142
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Frontiers in Neurorobotics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A hybrid exoskeleton comprising a powered exoskeleton and functional electrical stimulation (FES) is a promising technology for restoration of standing and walking functions after a neurological injury. Its shared control remains challenging due to the need to optimally distribute joint torques among FES and the powered exoskeleton while compensating for the FES-induced muscle fatigue and ensuring performance despite highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level hierarchical control design for shared control of a powered exoskeleton and FES to overcome these challenges. A higher-level neural network–based iterative learning controller (NNILC) is derived to generate torques needed to drive the hybrid system. Then, a low-level model predictive control (MPC)-based allocation strategy optimally distributes the torque contributions between FES and the exoskeleton’s knee motors based on the muscle fatigue and recovery characteristics of a participant’s quadriceps muscles. A Lyapunov-like stability analysis proves global asymptotic tracking of state-dependent desired joint trajectories. The experimental results on four non-disabled participants validate the effectiveness of the proposed NNILC-MPC framework. The root mean square error (RMSE) of the knee joint and the hip joint was reduced by 71.96 and 74.57%, respectively, in the fourth iteration compared to the RMSE in the 1st sit-to-stand iteration. 
    more » « less
  2. This paper outlines the construction, current state, and future goals of HERCULES, a three degree-of-freedom (DoF) pneumatically actuated exoskeleton for stroke rehabilitation. The exoskeleton arm is capable of joint-angle control at the elbow in flexion and extension, at the shoulder in flexion and extension, and at the shoulder in abduction and adduction. In the near future we plan to embed kinematic synergies into the control system architecture of this arm to gain dexterous and near-natural movements. 
    more » « less
  3. Abstract Most motion capture measurements suffer from soft-tissue artifacts (STA). Especially affected are rotations about the long axis of a limb segment, such as humeral internal-external rotation (HIER) and forearm pronation-supination (FPS). Unfortunately, most existing methods to compensate for STA were designed for optoelectronic motion capture systems. We present and evaluate an STA compensation method that (1) compensates for STA in HIER and/or FPS, (2) is developed specifically for electromagnetic motion capture systems, and (3) does not require additional calibration or data. To compensate for STA, calculation of HIER angles relies on forearm orientation, and calculation of FPS angles rely on hand orientation. To test this approach, we recorded whole-arm movement data from eight subjects and compared their joint angle trajectories calculated according to progressive levels of STA compensation. Compensated HIER and FPS angles were significantly larger than uncompensated angles. Although the effect of STA compensation on other joint angles (besides HIER and FPS) was usually modest, significant effects were seen in certain degrees-of-freedom under some conditions. Overall, the method functioned as intended during most of the range of motion of the upper limb, but it becomes unstable in extreme elbow extension and extreme wrist flexion–extension. Specifically, this method is not recommended for movements within 20 deg of full elbow extension, full wrist flexion, or full wrist extension. Since this method does not require additional calibration of data, it can be applied retroactively to data collected without the intent to compensate for STA. 
    more » « less
  4. null (Ed.)
    Upper limb mobility impairments affect individuals at all life stages. Exoskeletons can assist in rehabilitation as well as performing Activities of Daily Living (ADL). Most commercial assistive devices still rely on rigid robotics with constrained biomechanical degrees of freedom that may even increase user exertion. Therefore, this paper discusses the iterative design and development of a novel hybrid pneumatic actuation and Shape Memory Alloy (SMA) based wearable soft exoskeleton to assist in shoulder abduction and horizontal flexion/extension movements, with integrated soft strain sensing to track shoulder joint motion. The garment development was done in two stages which involved creating (1) SMA actuators integrated with soft sensing, and (2) integrating pneumatic actuation. The final soft exoskeleton design was developed based on the insights gained from two prior prototypes in terms of wearability, usability, comfort, and functional specifications (i.e., placement and number) of the sensors and actuators. The final exoskeleton is a modular, multilayer garment which uses a hybrid and customizable actuation strategy (SMA and inflatable pneumatic bladder). 
    more » « less
  5. Human-exoskeleton misalignment could lead to permanent damages upon the targeted limb with long-term use in rehabilitation. Hence, achieving proper alignment is necessary to ensure patient safety and an effective rehabilitative journey. In this study, a joint-based and task-based exoskeleton for upper limb rehabilitation were modeled and assessed. The assessment examined and quantified the misalignment present at the elbow joint as well as its effects on the main flexor and extensor muscles’ tendon length during elbow flexion-extension. The effects of the misalignments found for both exoskeletons resulted to be minimal in most muscles observed, except the anconeus and brachialis. The anconeus muscle demonstrated a relatively higher variation in tendon length with the joint-based exoskeleton misalignment, indicating that the task-based exoskeleton is favored for tasks that involve this particular muscle. Moreover, the brachialis demonstrated a significantly higher variation with the task-based exoskeleton misalignment, indicating that the joint-based exoskeleton is favored for tasks that involve the muscle.

    more » « less