skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultrasound Echogenicity as an Indicator of Muscle Fatigue during Functional Electrical Stimulation
Functional electrical stimulation (FES) is a potential neurorehabilitative intervention to enable functional movements in persons with neurological conditions that cause mobility impairments. However, the quick onset of muscle fatigue during FES is a significant challenge for sustaining the desired functional movements for more extended periods. Therefore, a considerable interest still exists in the development of sensing techniques that reliably measure FES-induced muscle fatigue. This study proposes to use ultrasound (US) imaging-derived echogenicity signal as an indicator of FES-induced muscle fatigue. We hypothesized that the US-derived echogenicity signal is sensitive to FES-induced muscle fatigue under isometric and dynamic muscle contraction conditions. Eight non-disabled participants participated in the experiments, where FES electrodes were applied on their tibialis anterior (TA) muscles. During a fatigue protocol under either isometric and dynamic ankle dorsiflexion conditions, we synchronously collected the isometric dorsiflexion torque or dynamic dorsiflexion angle on the ankle joint, US echogenicity signals from TA muscle, and the applied stimulation intensity. The experimental results showed an exponential reduction in the US echogenicity relative change (ERC) as the fatigue progressed under the isometric (R2=0.891±0.081) and dynamic (R2=0.858±0.065) conditions. The experimental results also implied a strong linear relationship between US ERC and TA muscle fatigue benchmark (dorsiflexion torque or angle amplitude), with R2 values of 0.840±0.054 and 0.794±0.065 under isometric and dynamic conditions, respectively. The findings in this study indicate that the US echogenicity signal is a computationally efficient signal that strongly represents FES-induced muscle fatigue. Its potential real-time implementation to detect fatigue can facilitate an FES closed-loop controller design that considers the FES-induced muscle fatigue.  more » « less
Award ID(s):
2002261
PAR ID:
10333463
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
22
Issue:
1
ISSN:
1424-8220
Page Range / eLocation ID:
335
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Functional electrical stimulation (FES) is a potential technique for reanimating paralyzed muscles post neurological injury/disease. Several technical challenges including difficulty in measuring and compensating for delayed muscle activation levels inhibit its satisfactory control performance. In this paper, an ultrasound (US) imaging approach is proposed to measure delayed muscle activation levels under the implementation of FES. Due to low sampling rates of US imaging, a sampled data observer (SDO) is designed to estimate the muscle activation in a continuous manner. The SDO is combined with continuous-time dynamic surface control (DSC) approach that compensates for the electromechanical delay (EMD) in the tibialis anterior (TA) activation dynamics. The stability analysis based on the Lyapunov-Krasovskii function proves that the SDO-based DSC plus delay compensation (SDO-DSC-DC) approach achieves semi-global uniformly ultimately bounded (SGUUB) tracking performance. Simulation results on an ankle dorsiflexion neuromusculoskeletal system show the root mean square error (RMSE) of desired trajectory tracking is reduced by 19.77 % by using the proposed SDO-DSC-DC compared to the DSC-DC without the SDO. The findings provide potentials for rehabilitative devices, like powered exoskeleton and FES, to assist or enhance human limb movement based on the corresponding muscle activities in real-time. 
    more » « less
  2. null (Ed.)
    Introduction: Functional electrical stimulation (FES) induced cycling has been shown to be an effective rehabilitation for those with lower limb movement disorders. However, a consequence of FES is an electromechanical delay (EMD) existing between the stimulation input and the onset of muscle force. The objective of this study is to determine if the cycle crank angle has an effect on the EMD. Methods: Experiments were performed on 10 participants, five healthy and five with neurological conditions resulting in movement disorders. A motor fixed the crank arm of a FES-cycle in 10 degree increments and at each angle stimulation was applied in a random sequence to a combination of the quadriceps femoris and gluteal muscle groups. The EMD was examined by considering the contraction delay (CD) and the residual delay (RD), where the CD (RD) is the time latency between the start (end) of stimulation and the onset (cessation) of torque. Two different measurements were used to examine the CD and RD. Further, two multiple linear regressions were performed on each measurement, one for the left and one for the right muscle groups. Results: The crank angle was determined to be statistically relevant for both the CD and RD. Conclusions: Since the crank angle has a significant effect on both the CD and RD, the angle has a significant effect on the EMD. Therefore, future efforts should consider the importance of the crank angle when modelling or estimating the EMD to improve control designs and ultimately improve rehabilitative treatments. 
    more » « less
  3. A hybrid exoskeleton comprising a powered exoskeleton and functional electrical stimulation (FES) is a promising technology for restoration of standing and walking functions after a neurological injury. Its shared control remains challenging due to the need to optimally distribute joint torques among FES and the powered exoskeleton while compensating for the FES-induced muscle fatigue and ensuring performance despite highly nonlinear and uncertain skeletal muscle behavior. This study develops a bi-level hierarchical control design for shared control of a powered exoskeleton and FES to overcome these challenges. A higher-level neural network–based iterative learning controller (NNILC) is derived to generate torques needed to drive the hybrid system. Then, a low-level model predictive control (MPC)-based allocation strategy optimally distributes the torque contributions between FES and the exoskeleton’s knee motors based on the muscle fatigue and recovery characteristics of a participant’s quadriceps muscles. A Lyapunov-like stability analysis proves global asymptotic tracking of state-dependent desired joint trajectories. The experimental results on four non-disabled participants validate the effectiveness of the proposed NNILC-MPC framework. The root mean square error (RMSE) of the knee joint and the hip joint was reduced by 71.96 and 74.57%, respectively, in the fourth iteration compared to the RMSE in the 1st sit-to-stand iteration. 
    more » « less
  4. Functional electrical stimulation (FES) is a vital method in neurorehabilitation used to reanimate paralyzed muscles, enhance the size and strength of atrophied muscles, and reduce spasticity. FES often leads to increased muscle fatigue, necessitating careful monitoring of the patient’s response. Ultrasound (US) imaging has been utilized to provide valuable insights into FES-induced fatigue by assessing changes in muscle thickness, stiffness, and strain. Current commercial FES electrodes lack sufficient US transparency, hindering the observation of muscle activity beneath the skin where the electrodes are placed. US-compatible electrodes are essential for accurate imaging and optimal FES performance, especially given the spatial constraints of conventional US probes and the need to monitor muscle areas directly beneath the electrodes. This study introduces specially designed body-conforming US-compatible FES (US-FES) electrodes constructed with a silver nanowire/polydimethylsiloxane (AgNW/PDMS) composite. We compared the performance of our body-conforming US-FES electrode with a commercial hydrogel electrode. The findings revealed that our US-FES electrode exhibited comparable conductivity and performance to the commercial one. Furthermore, US compatibility was investigated through phantom and in vivo tests, showing significant compatibility even during FES, unlike the commercial electrode. The results indicated that US-FES electrodes hold significant promise for the real-time monitoring of muscle activity during FES in clinical rehabilitative applications. 
    more » « less
  5. null (Ed.)
    Rehabilitation robotics is an emerging tool for motor recovery from various neurological impairments. However, balancing the human and robot contribution is an open problem. While the motor input can reduce fatigue, which is often a limiting factor of functional electrical stimulation (FES) exercises, too much assistance can slow progress. For a person with a neurological impairment, FES can assist by strategically contracting their muscle(s) to achieve a desired limb movement; however, feasibility can be limited due to factors such as subject comfort, muscle mass, unnatural muscle fiber recruitment, and stimulation saturation. Thus, motor assistance in addition to FES can be useful for prolonging exercise while still ensuring physical effort from the person. In this paper, FES is applied to the biceps brachii to perform biceps curls, and motor assistance is applied intermittently whenever the FES input reaches a pre-set comfort threshold. Exponential stability of the human–robot system is proven with a Lyapunov-like switched systems stability analysis. Experimental results from participants with neurological conditions demonstrate the feasibility and performance of the controller. 
    more » « less