skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating crowd-worker's reliability with interval-valued labels to improve the quality of crowdsourced work
With inputs from human crowds, usually through the Internet, crowdsourcing has become a promising methodology in AI and machine learning for applications that require human knowledge. Researchers have recently proposed interval-valued labels (IVLs), instead of commonly used binary-valued ones, to manage uncertainty in crowdsourcing [19]. However, that work has not yet taken the crowd worker’s reliability into consideration. Crowd workers usually come with various social and economic backgrounds, and have different levels of reliability. To further improve the overall quality of crowdsourcing with IVLs, this work presents practical methods that quantitatively estimate worker’s reliability in terms of his/her correctness, confidence, stability, and predictability from his/her IVLs. With worker’s reliability, this paper proposes two learning schemes: weighted interval majority voting (WIMV) and weighted preferred matching probability (WPMP). Computational experiments on sample datasets demonstrate that both WIMV and WPMP can significantly improve learning results in terms of higher precision, accuracy, and F1-score than other methods.  more » « less
Award ID(s):
1946391
PAR ID:
10321726
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2021 IEEE Symposium Series on Computational Intelligence (SSCI)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crowdsourcing has rapidly become a computing paradigm in machine learning and artificial intelligence. In crowdsourcing, multiple labels are collected from crowd-workers on an instance usually through the Internet. These labels are then aggregated as a single label to match the ground truth of the instance. Due to its open nature, human workers in crowdsourcing usually come with various levels of knowledge and socio-economic backgrounds. Effectively handling such human factors has been a focus in the study and applications of crowdsourcing. For example, Bi et al studied the impacts of worker's dedication, expertise, judgment, and task difficulty (Bi et al 2014). Qiu et al offered methods for selecting workers based on behavior prediction (Qiu et al 2016). Barbosa and Chen suggested rehumanizing crowdsourcing to deal with human biases (Barbosa 2019). Checco et al studied adversarial attacks on crowdsourcing for quality control (Checco et al 2020). There are many more related works available in literature. In contrast to commonly used binary-valued labels, interval-valued labels (IVLs) have been introduced very recently (Hu et al 2021). Applying statistical and probabilistic properties of interval-valued datasets, Spurling et al quantitatively defined worker's reliability in four measures: correctness, confidence, stability, and predictability (Spurling et al 2021). Calculating these measures, except correctness, does not require the ground truth of each instance but only worker’s IVLs. Applying these quantified reliability measures, people have significantly improved the overall quality of crowdsourcing (Spurling et al 2022). However, in real world applications, the reliability of a worker may vary from time to time rather than a constant. It is necessary to monitor worker’s reliability dynamically. Because a worker j labels instances sequentially, we treat j’s IVLs as an interval-valued time series in our approach. Assuming j’s reliability relies on the IVLs within a time window only, we calculate j’s reliability measures with the IVLs in the current time window. Moving the time window forward with our proposed practical strategies, we can monitor j’s reliability dynamically. Furthermore, the four reliability measures derived from IVLs are time varying too. With regression analysis, we can separate each reliability measure as an explainable trend and possible errors. To validate our approaches, we use four real world benchmark datasets in our computational experiments. Here are the main findings. The reliability weighted interval majority voting (WIMV) and weighted preferred matching probability (WPMP) schemes consistently overperform the base schemes in terms of much higher accuracy, precision, recall, and F1-score. Note: the base schemes are majority voting (MV), interval majority voting (IMV), and preferred matching probability (PMP). Through monitoring worker’s reliability, our computational experiments have successfully identified possible attackers. By removing identified attackers, we have ensured the quality. We have also examined the impact of window size selection. It is necessary to monitor worker’s reliability dynamically, and our computational results evident the potential success of our approaches.This work is partially supported by the US National Science Foundation through the grant award NSF/OIA-1946391. 
    more » « less
  2. null (Ed.)
    The artificial intelligence (AI) industry has created new jobs that are essential to the real world deployment of intelligent systems. Part of the job focuses on labeling data for machine learning models or having workers complete tasks that AI alone cannot do. These workers are usually known as ‘crowd workers’—they are part of a large distributed crowd that is jointly (but separately) working on the tasks although they are often invisible to end-users, leading to workers often being paid below minimum wage and having limited career growth. In this chapter, we draw upon the field of human–computer interaction to provide research methods for studying and empowering crowd workers. We present our Computational Worker Leagues which enable workers to work towards their desired professional goals and also supply quantitative information about crowdsourcing markets. This chapter demonstrates the benefits of this approach and highlights important factors to consider when researching the experiences of crowd workers. 
    more » « less
  3. Historical data sources, like medical records or biological collections, consist of unstructured heterogeneous content: handwritten text, different sizes and types of fonts, and text overlapped with lines, images, stamps, and sketches. The information these documents can provide is important, from a historical perspective and mainly because we can learn from it. The automatic digitization of these historical documents is a complex machine learning process that usually produces poor results, requiring costly interventions by experts, who have to transcribe and interpret the content. This paper describes hybrid (Human- and Machine-Intelligent) workflows for scientific data extraction, combining machine-learning and crowdsourcing software elements. Our results demonstrate that the mix of human and machine processes has advantages in data extraction time and quality, when compared to a machine-only workflow. More specifically, we show how OCRopus and Tesseract, two widely used open source Optical Character Recognition (OCR) tools, can improve their accuracy by more than 42%, when text areas are cropped by humans prior to OCR, while the total time can increase or decrease depending on the OCR selection. The digitization of 400 images, with Entomology, Bryophyte, and Lichen specimens, is evaluated following four different approaches: processing the whole specimen image (machine-only), processing crowd cropped labels (hybrid), processing crowd cropped fields (hybrid), and cleaning the machine-only output. As a secondary result, our experiments reveal differences in speed and quality between Tesseract and OCRopus. 
    more » « less
  4. Crowdsourcing is the learning paradigm that aims to combine noisy labels provided by a crowd of human annotators. To facilitate this label fusion, most contemporary crowdsourcing methods assume conditional independence between different annotators. Nevertheless, in many cases this assumption may not hold. This work investigates the effects of groups of correlated annotators in multiclass crowdsourced classification. To deal with this setup, a novel approach is developed to identify groups of dependent annotators via second-order moments of annotator responses. This in turn, enables appropriate dependence aware aggregation of annotator responses. Preliminary tests on synthetic and real data showcase the potential of the proposed approach. 
    more » « less
  5. In this paper, a hybrid shared controller is proposed for assisting human novice users to emulate human expert users within a human-automation interaction framework. This work is motivated to let human novice users learn the skills of human expert users using automation as a medium. Automation interacts with human users in two folds: it learns how to optimally control the system from the experts demonstrations by offline computation, and assists the novice in real time without excess amount of intervention based on the inference of the novice’s skill-level within our properly designed shared controller. Automation takes more control authority when the novices skill-level is poor, or it allows the novice to have more control authority when his/her skill-level is close to that of the expert to let the novice learn from his/her own control experience. The proposed scheme is shown to be able to improve the system performance while minimizing the intervention from the automation, which is demonstrated via an illustrative human-in-the-loop application example. 
    more » « less