ABSTRACT We present a detailed modelling study of CD-30°11223 (CD-30), a hot subdwarf (sdB)-white dwarf (WD) binary identified as a double detonation supernova progenitor, using the open-source stellar evolution software MESA. We focus on implementing binary evolution models carefully tuned to match the observed characteristics of the system including log g and Teff. For the first time, we account for the structure of the hydrogen envelope throughout the modelling, and find that the inclusion of element diffusion is important for matching the observed radius and temperature. We investigate the two sdB mass solutions (0.47 and 0.54 M⊙) previously proposed for this system, strongly favouring the 0.47 M⊙ solution. The WD cooling age is compared against the sdB age using our models, which suggest an sdB likely older than the WD, contrary to the standard assumption for compact sdB-WD binaries. Subsequently, we propose a possible alternate formation channel for CD-30. We also perform binary evolution modelling of the system to study various aspects such as mass transfer, orbital period evolution, and luminosity evolution. Our models confirm CD-30 as a double detonation supernova progenitor, expected to explode ≈55 Myr from now. The WD accretes an ≈0.17 M⊙ thick helium shell that causes a detonation, leaving a 0.30 M⊙ sdB ejected at ≈750 km s−1. The final 15 Myr of the system are characterized by helium accretion which dominates the system luminosity, possibly resembling an AM CVn-type system.
more »
« less
Discovery of a Double-detonation Thermonuclear Supernova Progenitor
Abstract We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a P orb = 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star, M sdB = 0.383 ± 0.028 M ⊙ with a massive white dwarf companion, M WD = 0.725 ± 0.026 M ⊙ . From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of ≈25 Myr whereas our MESA model predicts an sdB age of ≈170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion ≈25 Myr ago. Using the MESA stellar evolutionary code we find that the sdB star will start mass transfer in ≈6 Myr and in ≈60 Myr the white dwarf will reach a total mass of 0.92 M ⊙ with a thick helium layer of 0.17 M ⊙ . This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least ≈1% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.
more »
« less
- PAR ID:
- 10321887
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 925
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Helium star–carbon-oxygen white dwarf (CO WD) binaries are potential single-degenerate progenitor systems of thermonuclear supernovae. Revisiting a set of binary evolution calculations using the stellar evolution code MESA , we refine our previous predictions about which systems can lead to a thermonuclear supernova and then characterize the properties of the helium star donor at the time of explosion. We convert these model properties to near-UV/optical magnitudes assuming a blackbody spectrum and support this approach using a matched stellar atmosphere model. These models will be valuable to compare with pre-explosion imaging for future supernovae, though we emphasize the observational difficulty of detecting extremely blue companions. The pre-explosion source detected in association with SN 2012Z has been interpreted as a helium star binary containing an initially ultra-massive WD in a multiday orbit. However, extending our binary models to initial CO WD masses of up to 1.2 M ⊙ , we find that these systems undergo off-center carbon ignitions and thus are not expected to produce thermonuclear supernovae. This tension suggests that, if SN 2012Z is associated with a helium star–WD binary, then the pre-explosion optical light from the system must be significantly modified by the binary environment and/or the WD does not have a carbon-rich interior composition.more » « less
-
Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.more » « less
-
Abstract Double detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in unstably mass-transferring double WD binaries have become one of the leading contenders to explain most Type Ia supernovae. However, past theoretical studies of the explosion process have assumed relatively ad hoc initial conditions for the helium shells in which the double detonations begin. In this work, we construct realistic C/O WDs to use as the starting points for multidimensional double detonation simulations. We supplement these with simplified one-dimensional detonation calculations to gain a physical understanding of the conditions under which shell detonations can propagate successfully. We find that C/O WDs ≲1.0M⊙, which make up the majority of C/O WDs, are born with structures that can support double detonations. More massive C/O WDs require ∼10−3M⊙of accretion before detonations can successfully propagate in their shells, but such accretion may be common in the double WD binaries that host massive WDs. Our findings strongly suggest that if the direct impact accretion stream reaches high enough temperatures and densities during mass transfer from one WD to another, the accreting WD will undergo a double detonation. Furthermore, if the companion is also a C/O WD ≲1.0M⊙, it will undergo its own double detonation when impacted by the ejecta from the first explosion. Exceptions to this outcome may explain the newly discovered class of hypervelocity supernova survivors.more » « less
-
Abstract Study of the double-detonation Type Ia supernova scenario, in which a helium-shell detonation triggers a carbon-core detonation in a sub-Chandrasekhar-mass white dwarf (WD), has experienced a resurgence in the past decade. New evolutionary scenarios and a better understanding of which nuclear reactions are essential have allowed for successful explosions in WDs with much thinner helium shells than in the original, decades-old incarnation of the double-detonation scenario. In this paper, we present the first suite of light curves and spectra from multidimensional radiative transfer calculations of thin-shell double-detonation models, exploring a range of WD and helium-shell masses. We find broad agreement with the observed light curves and spectra of nonpeculiar Type Ia supernovae, from subluminous to overluminous subtypes, providing evidence that double detonations of sub-Chandrasekhar-mass WDs produce the bulk of observed Type Ia supernovae. Some discrepancies in spectral velocities and colors persist, but these may be brought into agreement by future calculations that include more accurate initial conditions and radiation transport physics.more » « less
An official website of the United States government

