skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Cross-issue correlation based opinion prediction in cyber argumentation
One of the challenging problems in large scale cyber-argumentation platforms is that users often engage and focus only on a few issues and leave other issues under-discussed and under-acknowledged. This kind of non-uniform participation obstructs the argumentation analysis models to retrieve collective intelligence from the underlying discussion. To resolve this problem, we developed an innovative opinion prediction model for a multi-issue cyber-argumentation environment. Our model predicts users’ opinions on the non-participated issues from similar users’ opinions on related issues using intelligent argumentation techniques and a collaborative filtering method. Based on our detailed experimental results on an empirical dataset collected using our cyber-argumentation platform, our model is 21.7% more accurate, handles data sparsity better than other popular opinion prediction methods. Our model can also predict opinions on multiple issues simultaneously with reasonable accuracy. Contrary to existing opinion prediction models, which only predict whether a user agrees on an issue, our model predicts how much a user agrees on the issue. To our knowledge, this is the first research to attempt multi-issue opinion prediction with the partial agreement in the cyber-argumentation platform. With additional data on non-participated issues, our opinion prediction model can help the collective intelligence analysis models to analyze social phenomena more effectively and accurately in the cyber argumentation platform.  more » « less
Award ID(s):
1946391
PAR ID:
10321967
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Argument & Computation
ISSN:
1946-2166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An overall rating cannot reveal the details of user’s preferences toward each feature of a product. One widespread practice of e-commerce websites is to provide ratings on predefined aspects of the product and user-generated reviews. Most recent multi-criteria works employ aspect preferences of users or user reviews to understand the opinions and behavior of users. However, these works fail to learn how users correlate these information sources when users express their opinion about an item. In this work, we present Multi-task & Multi-Criteria Review-based Rating (MMCRR), a framework to predict the overall ratings of items by learning how users represent their preferences when using multi-criteria ratings and text reviews. We conduct extensive experiments with three real-life datasets and six baseline models. The results show that MMCRR can reduce prediction errors while learning features better from the data. 
    more » « less
  2. null (Ed.)
    Using unreliable information sources generating conflicting evidence may lead to a large uncertainty, which significantly hurts the decision making process. Recently, many approaches have been taken to integrate conflicting data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly deal with uncertainty, a belief model called Subjective Logic (SL), as a variant of Dumpster-Shafer Theory, has been proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume of fusing operators, which have been used to solve many opinion inference problems in trust networks. However, the operators of SL are known to be lack of scalability in inferring unknown opinions from large network data as a result of the sequential procedures of merging multiple opinions. In addition, SL does not consider deriving opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference method that combines SL and Probabilistic Soft Logic (PSL), namely, Collective Subjective Plus, CSL + , which is resistible to highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner to deal with large-scale network data, allowing high scalability based on relationships between opinions. However, PSL does not consider an uncertainty dimension in a subjective opinion. To take benefits from both SL and PSL, we proposed a hybrid approach called CSL + for achieving high scalability and high prediction accuracy for unknown opinions with uncertainty derived from a lack of evidence and/or conflicting evidence. Through the extensive experiments on four semi-synthetic and two real-world datasets, we showed that the CSL + outperforms the state-of-the-art belief model (i.e., SL), probabilistic inference models (i.e., PSL, CSL), and deep learning model (i.e., GCN-VAE-opinion) in terms of prediction accuracy, computational complexity, and real running time. 
    more » « less
  3. Predicting users’ opinions in their response to social events has important real-world applications, many of which political and social impacts. Existing approaches derive a population’s opinion on a going event from large scores of user generated content. In certain scenarios, we may not be able to acquire such content and thus cannot infer an unbiased opinion on those emerging events. To address this problem, we propose to explore opinion on unseen articles based on one’s fingerprinting: the prior reading and commenting history. This work presents a focused study on modeling and leveraging fingerprinting techniques to predict a user’s future opinion. We introduce a recurrent neural network based model that integrates fingerprinting. We collect a large dataset that consists of event-comment pairs from six news websites. We evaluate the proposed model on this dataset. The results show substantial performance gains demonstrating the effectiveness of our approach. 
    more » « less
  4. Abstract

    Research on public views of biotechnology has centered on genetically modified (GM) foods. However, as the breadth of biotechnology applications grows, a better understanding of public concerns about non-agricultural biotechnology products is needed in order to develop proactive strategies to address these concerns. Here, we explore the perceived benefits and risks associated with five biotechnology products and how those perceptions translate into public opinion about the use and regulation of biotechnology in the United States. While we found greater support for non-agricultural biotechnology product, 70% of individuals surveyed showed no or little variation in their support across the products, indicating opinions about early GM products may be influencing the acceptance of emerging biotechnologies. We identified five common patterns of opinions about biotechnology and used machine learning models to integrate a wide range of factors and predict a respondent’s opinion group. While the model was particularly good at identifying individuals supportive of biotechnology, differentiating between individuals from the non- and conditionally-supportive opinion groups was more challenging, emphasizing the complexity of public opinions of emerging biotechnology products.

     
    more » « less
  5. Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all. 
    more » « less