- Award ID(s):
- 1946391
- PAR ID:
- 10321967
- Date Published:
- Journal Name:
- Argument & Computation
- ISSN:
- 1946-2166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
An overall rating cannot reveal the details of user’s preferences toward each feature of a product. One widespread practice of e-commerce websites is to provide ratings on predefined aspects of the product and user-generated reviews. Most recent multi-criteria works employ aspect preferences of users or user reviews to understand the opinions and behavior of users. However, these works fail to learn how users correlate these information sources when users express their opinion about an item. In this work, we present Multi-task & Multi-Criteria Review-based Rating (MMCRR), a framework to predict the overall ratings of items by learning how users represent their preferences when using multi-criteria ratings and text reviews. We conduct extensive experiments with three real-life datasets and six baseline models. The results show that MMCRR can reduce prediction errors while learning features better from the data.more » « less
-
null (Ed.)Using unreliable information sources generating conflicting evidence may lead to a large uncertainty, which significantly hurts the decision making process. Recently, many approaches have been taken to integrate conflicting data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly deal with uncertainty, a belief model called Subjective Logic (SL), as a variant of Dumpster-Shafer Theory, has been proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume of fusing operators, which have been used to solve many opinion inference problems in trust networks. However, the operators of SL are known to be lack of scalability in inferring unknown opinions from large network data as a result of the sequential procedures of merging multiple opinions. In addition, SL does not consider deriving opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference method that combines SL and Probabilistic Soft Logic (PSL), namely, Collective Subjective Plus, CSL + , which is resistible to highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner to deal with large-scale network data, allowing high scalability based on relationships between opinions. However, PSL does not consider an uncertainty dimension in a subjective opinion. To take benefits from both SL and PSL, we proposed a hybrid approach called CSL + for achieving high scalability and high prediction accuracy for unknown opinions with uncertainty derived from a lack of evidence and/or conflicting evidence. Through the extensive experiments on four semi-synthetic and two real-world datasets, we showed that the CSL + outperforms the state-of-the-art belief model (i.e., SL), probabilistic inference models (i.e., PSL, CSL), and deep learning model (i.e., GCN-VAE-opinion) in terms of prediction accuracy, computational complexity, and real running time.more » « less
-
Predicting users’ opinions in their response to social events has important real-world applications, many of which political and social impacts. Existing approaches derive a population’s opinion on a going event from large scores of user generated content. In certain scenarios, we may not be able to acquire such content and thus cannot infer an unbiased opinion on those emerging events. To address this problem, we propose to explore opinion on unseen articles based on one’s fingerprinting: the prior reading and commenting history. This work presents a focused study on modeling and leveraging fingerprinting techniques to predict a user’s future opinion. We introduce a recurrent neural network based model that integrates fingerprinting. We collect a large dataset that consists of event-comment pairs from six news websites. We evaluate the proposed model on this dataset. The results show substantial performance gains demonstrating the effectiveness of our approach.more » « less
-
Abstract Research on public views of biotechnology has centered on genetically modified (GM) foods. However, as the breadth of biotechnology applications grows, a better understanding of public concerns about non-agricultural biotechnology products is needed in order to develop proactive strategies to address these concerns. Here, we explore the perceived benefits and risks associated with five biotechnology products and how those perceptions translate into public opinion about the use and regulation of biotechnology in the United States. While we found greater support for non-agricultural biotechnology product, 70% of individuals surveyed showed no or little variation in their support across the products, indicating opinions about early GM products may be influencing the acceptance of emerging biotechnologies. We identified five common patterns of opinions about biotechnology and used machine learning models to integrate a wide range of factors and predict a respondent’s opinion group. While the model was particularly good at identifying individuals supportive of biotechnology, differentiating between individuals from the non- and conditionally-supportive opinion groups was more challenging, emphasizing the complexity of public opinions of emerging biotechnology products.
-
Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.more » « less