- Award ID(s):
- 2137973
- PAR ID:
- 10322009
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 12
- Issue:
- 5
- ISSN:
- 2076-3417
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Three different organic solvents (dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)) were used to improve the solubility of LiNO 3 in a standard carbonate-based electrolyte with lithium difluoro(oxalato)borate (LiDFOB) as the salt. Together, the LiDFOB and organic-solvent solubilized LiNO 3 preferentially reduce on the surface of silicon-containing anodes to create an SEI rich in oxalates, nitrate decomposition species, and B-F species. The improved stability of the SEI throughout the first 100 cycles results in silicon and silicon/graphite composite anodes with better capacity retention than observed with standard electrolytes or fluoroethylene carbonate (FEC) containing electrolytes. This study demonstrates the feasibility of the use of non-traditional electrolyte solvents in the improvement and optimization of lithium ion-battery electrolytes.more » « less
-
An investigation of alternative lithium salts, lithium tetrafluoroborate (LiBF 4 ), lithium difluoro(oxalato)borate (LiDFOB) and lithium hexafluorophosphate (LiPF 6 ), in novel ester-based (methyl acetate/fluoroethylene carbonate- MA/FEC or methyl propionate/fluoroethylene carbonate- MP/FEC) electrolyte formulations has been conducted in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622)/graphite cells to improve low temperature cycling performance of lithium ion batteries at −20 °C. Improved low temperature performance was observed with all the lithium salts in MA/FEC electrolyte while comparable room temperature (25 °C) capacities were observed with LiPF 6 salt only. Detailed ex-situ analysis of surface films generated with LiBF 4 , LiDFOB and LiPF 6 in ester-based electrolytes reveals that the solid electrolyte interphase (SEI) is predominately composed of lithium salt decompaction products and addition of 10% FEC (by volume%) may not be sufficient at forming a protective SEI.more » « less
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.more » « less
-
Lithium metal batteries promise higher energy densities than current lithium-ion batteries but require novel electrolytes to extend their cycle life. Fluorinated solvents help stabilize the solid electrolyte interphase (SEI) with lithium metal, but are believed to have weaker solvation ability compared to their nonfluorinated counterparts and are deemed ‘poorer electrolytes’. In this work, we synthesize tris(2-fluoroethyl) borate (TFEB) as a new fluorinated borate ester solvent and show that TFEB unexpectedly has higher lithium salt solubility than its nonfluorinated counterpart (triethyl borate). Through experiments and simulations, we show that the partially fluorinated –CH2F group acts as the primary coordination site that promotes lithium salt dissolution. TFEB electrolyte has a higher lithium transference number and better rate capability compared to methoxy polyethyleneglycol borate esters reported in the literature. In addition, TFEB supports compact lithium deposition morphology, high lithium metal Coulombic efficiency, and stable cycling of lithium metal/LiFePO4 cells. This work ushers in a new electrolyte design paradigm where partially fluorinated moieties enable salt dissolution and can serve as primary ion coordination sites for next-generation electrolytes.more » « less
-
Abstract Aqueous electrolytes are promising in large-scale energy storage applications due to intrinsic low toxicity, non-flammability, high ion conductivity, and low cost. However, pure water’s narrow electrochemical stability window (ESW) limits the energy density of aqueous rechargeable batteries. Water-in-salt electrolytes (WiSE) proposal has expanded the ESW to over 3 V by changing electrolyte solvation structure. The limited solubility and WIS electrolyte crystallization have been persistent concerns for imide-based lithium salts. Asymmetric lithium salts compensate for the above flaws. However, studying the solvation structure of asymmetric salt aqueous electrolytes is rare. Here, we applied small-angle x-ray scattering (SAXS) and Raman spectroscope to reveal the solvation structure of imide-based asymmetric lithium salts. The SAXS spectra show the blue shifts of the lower
q peak with decreased intensity as the increasing of concentration, indicating a decrease in the average distance between solvated anions. Significantly, an exponential decrease in the d-spacing as a function of concentration was observed. In addition, we also applied the Raman spectroscopy technique to study the evolutions of solvent-separated ion pairs (SSIPs), contacted ion pairs (CIPs), and aggregate ions (AGGs) in the solvation structure of asymmetric salt solutions.