skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Super-Resolution Electrochemical Impedance Imaging with a 100 x 100 CMOS Sensor Array
This paper presents a 100 x 100 super-resolution integrated sensor array for microscale electrochemical impedance spectroscopy (EIS) imaging. The system is implemented in 180 nm CMOS with 10 x 10 micron pixels. Rather than treating each electrode independently, the sensor is designed to measure the mutual capacitance between programmable sets of pixels. Multiple spatially-resolved measurements can then be computationally combined to produce super-resolution impedance images. Experimental measurements of sub-cellular permittivity distributions within single algae cells demonstrate the potential of this new approach.  more » « less
Award ID(s):
2027108
PAR ID:
10322164
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Biomedical Circuits and Systems Conference (BioCAS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While classical electrochemical impedance spectroscopy (EIS) focuses on measurements from a single working electrode, dense active microelectrode arrays offer opportunities for new modes of sensing. Here we present experimental results with an integrated sensor array for electrochemical imaging. The system uses a 100 x 100 custom CMOS electrode array with 10 micron pixels, which measures impedance at frequencies up to 100 MHz. The sensor chip is uniquely designed to take advantage of the electrostatic coupling between groups of nearby pixels to re-shape the local electric field. Multiple bias voltages and clock phases create new types of signal diversity that will enable enhanced sensing modes for computational imaging and impedance tomography. 
    more » « less
  2. Abstract Magnetic sensing is present in our everyday interactions with consumer electronics and demonstrates the potential for the measurement of extremely weak biomagnetic fields, such as those of the heart and brain. In this work, we leverage the many benefits of microelectromechanical system (MEMS) devices to fabricate a small, low-power, and inexpensive sensor whose resolution is in the range of biomagnetic fields. At present, biomagnetic fields are measured only by expensive mechanisms such as optical pumping and superconducting quantum interference devices (SQUIDs), suggesting a large opportunity for MEMS technology in this work. The prototype fabrication is achieved by assembling micro-objects, including a permanent micromagnet, onto a postrelease commercial MEMS accelerometer using a pick-and-place technique. With this system, we demonstrate a room-temperature MEMS magnetic gradiometer. In air, the sensor’s response is linear, with a resolution of 1.1 nT cm −1 , spans over 3 decades of dynamic range to 4.6 µT cm −1 , and is capable of off-resonance measurements at low frequencies. In a 1 mTorr vacuum with 20 dB magnetic shielding, the sensor achieves a 100 pT cm −1 resolution at resonance. This resolution represents a 30-fold improvement compared with that of MEMS magnetometer technology and a 1000-fold improvement compared with that of MEMS gradiometer technology. The sensor is capable of a small spatial resolution with a magnetic sensing element of 0.25 mm along its sensitive axis, a >4-fold improvement compared with that of MEMS gradiometer technology. The calculated noise floor of this platform is 110 fT cm −1  Hz −1/2 , and thus, these devices hold promise for both magnetocardiography (MCG) and magnetoencephalography (MEG) applications. 
    more » « less
  3. Abstract We report on a ∼5 σ detection of polarized 3–6 keV X-ray emission from the supernova remnant Cassiopeia A (Cas A) with the Imaging X-ray Polarimetry Explorer (IXPE). The overall polarization degree of 1.8% ± 0.3% is detected by summing over a large region, assuming circular symmetry for the polarization vectors. The measurements imply an average polarization degree for the synchrotron component of ∼2.5%, and close to 5% for the X-ray synchrotron-dominated forward shock region. These numbers are based on an assessment of the thermal and nonthermal radiation contributions, for which we used a detailed spatial-spectral model based on Chandra X-ray data. A pixel-by-pixel search for polarization provides a few tentative detections from discrete regions at the ∼ 3 σ confidence level. Given the number of pixels, the significance is insufficient to claim a detection for individual pixels, but implies considerable turbulence on scales smaller than the angular resolution. Cas A’s X-ray continuum emission is dominated by synchrotron radiation from regions within ≲10 17 cm of the forward and reverse shocks. We find that (i) the measured polarization angle corresponds to a radially oriented magnetic field, similar to what has been inferred from radio observations; (ii) the X-ray polarization degree is lower than in the radio band (∼5%). Since shock compression should impose a tangential magnetic-field structure, the IXPE results imply that magnetic fields are reoriented within ∼10 17 cm of the shock. If the magnetic-field alignment is due to locally enhanced acceleration near quasi-parallel shocks, the preferred X-ray polarization angle suggests a size of 3 × 10 16 cm for cells with radial magnetic fields. 
    more » « less
  4. Abstract To overcome the spatial resolution limit set by aperture-limited diffraction in traditional scanning transmission electron microscopy, microscopists have developed ptychography enabled by iterative phase retrieval algorithms and high-dynamic-range pixel array detectors. Current detector designs are limited by the data rate off chip, so a high-pixel-count detector has a proportionally lower frame rate than the few-segment detectors used for differential phase contrast (DPC) imaging. This slower acquisition speed leads to heightened vulnerability to scan noise, drift, and potential sample damage. This creates opportunities for repurposing fast segmented detectors for ptychography by trading a reduction in reciprocal space pixels for an increase in real space pixels. Here, we explore a strategy of oversampling in real space and instead apply detector pixel upsampling during the reconstruction process. We demonstrate the viability of achieving super-resolution ptychography on thin objects using only 2 × 2 detector pixels, surpassing the resolution of integrated DPC (iDPC) imaging. With optimization using simulated datasets and experiments on MoTe2/WSe2 bilayer moiré superlattices, we achieved super-resolution ptychography reconstructions under rapid acquisition conditions (37.5 pA, 1 μs dwell time), yielding over 50% improvements in contrast and information limit compared to annular dark field and iDPC imaging on the same detectors. 
    more » « less
  5. This paper presents a holographic fabrication of a new type of photonic crystal, called graded photonic super-crystals with graded basis, dual period and dual symmetry. Pixel-by-pixel phase coding of laser beams in a spatial light modulator can produce the highest resolution in produced photonic super-lattice. Two-level designs in phase pattern are used to generate graded photonic super-crystals where graded square lattice clusters are orientated in four, five or six-fold symmetry. Further phase engineering in a super-cell of 12x8 pixels can produce small-period square lattice orientated in a large period rectangular pattern. 
    more » « less