Abstract Ice‐shelf basal channels form due to concentrated submarine melting. They are present in many Antarctic ice shelves and can reduce ice‐shelf structural integrity, potentially destabilizing ice shelves by full‐depth incision. Here, we describe the viscous ice response to a basal channel—secondary flow—which acts perpendicular to the channel axis and is induced by gradients in ice thickness. We use a full‐Stokes ice‐flow model to systematically assess the transient evolution of a basal channel in the presence of melting. Secondary flow increases with channel size and reduces the rate of channel incision, such that linear extrapolation or the Shallow‐Shelf Approximation cannot project future channel evolution. For thick ice shelves (m) secondary flow potentially stabilizes the channel, but is insufficient to significantly delay breakthrough for thinner ice (m). Using synthetic data, we assess the impact of secondary flow when inferring basal‐channel melt rates from satellite observations.
more »
« less
Treatment of ice-shelf evolution combining flow and flexure
Abstract We develop a two-dimensional, plan-view formulation of ice-shelf flow and viscoelastic ice-shelf flexure. This formulation combines, for the first time, the shallow-shelf approximation for horizontal ice-shelf flow (and shallow-stream approximation for flow on lubricated beds such as where ice rises and rumples form), with the treatment of a thin-plate flexure. We demonstrate the treatment by performing two finite-element simulations: one of the relict pedestalled lake features that exist on some debris-covered ice shelves due to strong heterogeneity in surface ablation, and the other of ice rumpling in the grounding zone of an ice rise. The proposed treatment opens new venues to investigate physical processes that require coupling between the longitudinal deformation and vertical flexure, for instance, the effects of surface melting and supraglacial lakes on ice shelves, interactions with the sea swell, and many others.
more »
« less
- PAR ID:
- 10322206
- Date Published:
- Journal Name:
- Journal of Glaciology
- Volume:
- 67
- Issue:
- 265
- ISSN:
- 0022-1430
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inaccurate representations of iceberg calving from ice shelves are a large source of uncertainty in mass-loss projections from the Antarctic ice sheet. Here, we address this limitation by implementing and testing a continuum damage-mechanics model in a continental scale ice-sheet model. The damage-mechanics formulation, based on a linear stability analysis and subsequent long-wavelength approximation of crevasses that evolve in a viscous medium, links damage evolution to climate forcing and the large-scale stresses within an ice shelf. We incorporate this model into the BISICLES ice-sheet model and test it by applying it to idealized (1) ice tongues, for which we present analytical solutions and (2) buttressed ice-shelf geometries. Our simulations show that the model reproduces the large disparity in lengths of ice shelves with geometries and melt rates broadly similar to those of four Antarctic ice shelves: Erebus Glacier Tongue (length ~ 13 km), the unembayed portion of Drygalski Ice Tongue (~ 65 km), the Amery Ice Shelf (~ 350 km) and the Ross Ice Shelf (~ 500 km). These results demonstrate that our simple continuum model holds promise for constraining realistic ice-shelf extents in large-scale ice-sheet models in a computationally tractable manner.more » « less
-
Flexure and extension of ice shelves in response to incident ocean surface gravity waves have been linked to iceberg calving, rift growth, and even disintegration of ice shelves. Most modeling studies utilize a plate bending model for the ice, focusing exclusively on flexural gravity waves. Ross Ice shelf seismic data shows not only flexural gravity waves, with dominantly vertical displacements, but also extensional Lamb waves, which propagate much faster with dominantly horizontal displacements. Our objective is to model the full-wave response of ice shelves, including ocean compressibility, ice elasticity, and gravity. Our model is a 2D vertical cross-section of the ice shelf and sub-shelf ocean cavity. We quantify the frequency-dependent excitation of flexural gravity and extensional Lamb waves and provide a quantitative theory for extensional Lamb wave generation by the horizontal force imparted by pressure changes on the vertical ice shelf edge exerted by gravity waves. Our model predicts a horizontal to vertical displacement ratio that increases with decreasing frequency, with ratio equal to unity at ~0.001 Hz. Furthermore, in the very long period band (<0.003 Hz), tilt from flexural gravity waves provides an order of magnitude larger contribution to seismometer horizontal components than horizontal displacements from extensional Lamb waves.more » « less
-
Abstract Surface melting and lakes are common to Antarctic ice shelves, and their existence and drainages have been invoked as a precursor for ice shelf collapse. Here, we present satellite observations over 2014–2020 of repeated, rapid drainages of a supraglacial lake at the grounding zone of Amery Ice Shelf, East Antarctica. Post‐drainage imagery in 2018 reveals lake bottom features characteristic of rapid, vertical lake drainage. Observed lake volumes indicate drainages are not associated with a threshold meltwater volume. Instead, drainages typically coincide with periods of high daily tidal amplitude, suggesting hydrofracture is assisted by tidally forced ice flexure inherent to the ice shelf grounding zone. Combined with observations of widespread grounding zone lake drainages on Amery, these findings indicate ice shelf meltwater accumulation may be inhibited by grounding zone drainage events, thus representing a potential stabilizing mechanism despite enhanced melting common to these regions.more » « less
-
null (Ed.)Abstract. Surface meltwater on ice shelves can exist as slush, it can pond in lakes orcrevasses, or it can flow in surface streams and rivers. The collapse of theLarsen B Ice Shelf in 2002 has been attributed to the sudden drainage of∼3000 surface lakes and has highlighted the potential forsurface water to cause ice-shelf instability. Surface meltwater systems havebeen identified across numerous Antarctic ice shelves, although the extentto which these systems impact ice-shelf instability is poorly constrained.To better understand the role of surface meltwater systems on ice shelves,it is important to track their seasonal development, monitoring thefluctuations in surface water volume and the transfer of water acrossice-shelf surfaces. Here, we use Landsat 8 and Sentinel-2 imagery to tracksurface meltwater across the Nivlisen Ice Shelf in the 2016–2017 meltseason. We develop the Fully Automated Supraglacial-Water Tracking algorithmfor Ice Shelves (FASTISh) and use it to identify and track the developmentof 1598 water bodies, which we classify as either circular or linear. Thetotal volume of surface meltwater peaks on 26 January 2017 at 5.5×107 m3. At this time, 63 % of the total volume is held withintwo linear surface meltwater systems, which are up to 27 km long, areorientated along the ice shelf's north–south axis, and follow the surfaceslope. Over the course of the melt season, they appear to migrate away fromthe grounding line, while growing in size and enveloping smaller waterbodies. This suggests there is large-scale lateral water transfer throughthe surface meltwater system and the firn pack towards the ice-shelf frontduring the summer.more » « less
An official website of the United States government

