skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A DEFT Way to Forecast Solar Flares
Abstract Solar flares have been linked to some of the most significant space weather hazards at Earth. These hazards, including radio blackouts and energetic particle events, can start just minutes after the flare onset. Therefore, it is of great importance to identify and predict flare events. In this paper we introduce the Detection and EUV Flare Tracking (DEFT) tool, which allows us to identify flare signatures and their precursors using high spatial and temporal resolution extreme-ultraviolet (EUV) solar observations. The unique advantage of DEFT is its ability to identify small but significant EUV intensity changes that may lead to solar eruptions. Furthermore, the tool can identify the location of the disturbances and distinguish events occurring at the same time in multiple locations. The algorithm analyzes high temporal cadence observations obtained from the Solar Ultraviolet Imager instrument aboard the GOES-R satellite. In a study of 61 flares of various magnitudes observed in 2017, the “main” EUV flare signatures (those closest in time to the X-ray start time) were identified on average 6 minutes early. The “precursor” EUV signatures (second-closest EUV signatures to the X-ray start time) appeared on average 14 minutes early. Our next goal is to develop an operational version of DEFT and to simulate and test its real-time use. A fully operational DEFT has the potential to significantly improve space weather forecast times.  more » « less
Award ID(s):
1931062
PAR ID:
10322432
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
922
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. - (Ed.)
    EUV brightenings are small-scale magnetic reconnection events that consistently appear before and after solar flares. However, it is not well understood how EUV precursors might foreshadow flares and what the physical connection is between the EUV signatures and flares. We studied flare-active and inactive periods in three separate studies using the Detection and EUV Flare Tracking (DEFT) tool. In Study 1, EUV signatures were identified in 200 no-flare days, in Study 2 EUV signatures before 360 flares were analyzed, and in Study 3 close to 36,000 EUV signatures were detected, and their pre- and postflare distribution and trends were studied. Our key questions were as follows: do EUV signatures occur consistently before flares, do EUV signatures occur without flares, are there flares without EUV precursors, and is it possible to forecast different magnitude flares based on preceding EUV signature trends? Study 1 showed that in no-flare periods EUV signatures were only detected 4% of the time. Study 2 showed that EUV precursors were present 92% of the time within 6 hr before ≥C-class flares. Study 3 showed that over 90% of the signatures were associated with flares (≥B class), and over 50% of all signatures were associated with ≥M-class flares. A superposed epoch analysis showed precursor frequency peaks at  ∼70 and 100 minutes before M- and X-class flares, respectively, while B- and C-class flares had no notable precursor frequency peaks. These results demonstrate the close connection between EUV signatures and flares and the significant potential EUV signatures have in improving space weather forecasting. 
    more » « less
  2. Abstract The Detection and EUV Flare Tracking (DEFT) tool automatically identifies flare precursors in extreme ultraviolet (EUV) observations in a fast and consistent manner, with minimal computational overhead. DEFT currently uses GOES/SUVI 304 Å observations to detect, group, and flag sudden impulses that could be precursors to flares. In this study, we analyzed precursor signatures before 351 flares (150 C, 150 M, and 51 X class flares) that occurred from 2017 to date. Across these magnitudes, precursors were detected for 93% of the flares when using a 6 hr window before the flare start times. Using superposed epoch analysis, we found that elevated precursor activity tends to occur across all magnitude flares in the last 2 hr before the flares. The frequency of precursors gradually increases before M class flares but decreases for C class flares. We also found that in the last 20 minutes there is a significantly higher precursor frequency, pixel count, and power associated with M class flares than C class flares. We suggest that the observed EUV precursors are the observable signatures of small-scale magnetic reconnection events, and the consistently increasing frequency of precursor activity could indicate that the region is becoming increasingly unstable and reaching a critical stage that could result in flare initiation. Continuing research on EUV precursors is essential to better understand preflare processes that build and reduce magnetic instability prior to main-stage flares. The consistent and reliable detection and differentiation of EUV precursors could also complement and significantly improve current flare forecasting efforts. 
    more » « less
  3. Supervised Machine Learning (ML) models for solar flare prediction rely on accurate labels for a given input data set, commonly obtained from the GOES/XRS X-ray flare catalog. With increasing interest in utilizing ultraviolet (UV) and extreme ultraviolet (EUV) image data as input to these models, we seek to understand if flaring activity can be defined and quantified using EUV data alone. This would allow us to move away from the GOES single pixel measurement definition of flares and use the same data we use for flare prediction for label creation. In this work, we present a Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA)-based flare catalog covering flare of GOES X-ray magnitudes C, M and X from 2010 to 2017. We use active region (AR) cutouts of full disk AIA images to match the corresponding SDO/Helioseismic and Magnetic Imager (HMI) SHARPS (Space weather HMI Active Region Patches) that have been extensively used in ML flare prediction studies, thus allowing for labeling of AR number as well as flare magnitude and timing. Flare start, peak, and end times are defined using a peak-finding algorithm on AIA time series data obtained by summing the intensity across the AIA cutouts. An extremely randomized trees (ERT) regression model is used to map SDO/AIA flare magnitudes to GOES X-ray magnitude, achieving a low-variance regression. We find an accurate overlap on 85% of M/X flares between our resulting AIA catalog and the GOES flare catalog. However, we also discover a number of large flares unrecorded or mislabeled in the GOES catalog. 
    more » « less
  4. Abstract Magnetic flux ropes are the centerpiece of solar eruptions. Direct measurements for the magnetic field of flux ropes are crucial for understanding the triggering and energy release processes, yet they remain heretofore elusive. Here we report microwave imaging spectroscopy observations of an M1.4-class solar flare that occurred on 2017 September 6, using data obtained by the Expanded Owens Valley Solar Array. This flare event is associated with a partial eruption of a twisted filament observed in Hαby the Goode Solar Telescope at the Big Bear Solar Observatory. The extreme ultraviolet (EUV) and X-ray signatures of the event are generally consistent with the standard scenario of eruptive flares, with the presence of double flare ribbons connected by a bright flare arcade. Intriguingly, this partial eruption event features a microwave counterpart, whose spatial and temporal evolution closely follow the filament seen in Hαand EUV. The spectral properties of the microwave source are consistent with nonthermal gyrosynchrotron radiation. Using spatially resolved microwave spectral analysis, we derive the magnetic field strength along the filament spine, which ranges from 600 to 1400 Gauss from its apex to the legs. The results agree well with the nonlinear force-free magnetic model extrapolated from the preflare photospheric magnetogram. We conclude that the microwave counterpart of the erupting filament is likely due to flare-accelerated electrons injected into the filament-hosting magnetic flux rope cavity following the newly reconnected magnetic field lines. 
    more » « less
  5. Abstract Extreme-ultraviolet late phase (ELP) refers to the second extreme-ultraviolet (EUV) radiation enhancement observed in certain solar flares, which usually occurs tens of minutes to several hours after the peak of soft X-ray emission. The coronal loop system that hosts the ELP emission is often different from the main flaring arcade, and the enhanced EUV emission therein may imply an additional heating process. However, the origin of the ELP remains rather unclear. Here we present the analysis of a C1.4 flare that features such an ELP, which is also observed in microwave wavelengths by the Expanded Owens Valley Solar Array. Similar to the case of the ELP, we find a gradual microwave enhancement that occurs about 3 minutes after the main impulsive phase microwave peaks. Radio sources coincide with both foot points of the ELP loops and spectral fits on the time-varying microwave spectra demonstrate a clear deviation of the electron distribution from the Maxwellian case, which could result from injected nonthermal electrons or nonuniform heating to the footpoint plasma. We further point out that the delayed microwave enhancement suggests the presence of an additional heating process, which could be responsible for the evaporation of heated plasma that fills the ELP loops, producing the prolonged ELP emission. 
    more » « less