skip to main content


Title: Modulation of electrophoresis, electroosmosis and diffusion for electrical transport of proteins through a solid-state nanopore
Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate ( C R ), transport mechanism ( i.e. , electrophoresis, electroosmosis or diffusion), and 3D conformation ( e.g. , chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5–4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations ( i.e. , 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate ( R diff ) into electrophoretic ( R diff,EP ) and electroosmotic ( R diff,EO ) components provided an approach to calculate the zeta-potential of hSTf ( ζ hSTf ) with the aid of C R and zeta potential of the nanopore surface ( ζ pore ) with ( ζ pore – ζ hSTf ) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins.  more » « less
Award ID(s):
2022374 2022398
NSF-PAR ID:
10276368
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
RSC Advances
Volume:
11
Issue:
39
ISSN:
2046-2069
Page Range / eLocation ID:
24398 to 24409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans/Ccis< 1) or negative chemical gradients (Ctrans/Ccis> 1). Thecisside concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while thetransside concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+and Clions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.

     
    more » « less
  2. Abstract

    Recently, we developed a fabrication method—chemically‐tuned controlled dielectric breakdown (CT‐CDB)—that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid‐state nanopores (SSNs). However, the noise characteristics of CT‐CDB nanopores are largely unexplored. In this work, we investigated the 1/fnoise of CT‐CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs) is ∼3 order magnitude greater. Theαsof CT‐CDB nanopores was ∼5 orders of magnitude greater than theirαb, which suggests that the surface contribution plays a dominant role in 1/fnoise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/fnoise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/fnoise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7–8 range to be optimal for DNA sensing with CT‐CDB nanopores.

     
    more » « less
  3. Abstract

    The zeta potential (ζ) is the effective charge energy of a solvated protein, describing the magnitude of electrostatic interactions in solution. It is commonly used in the assessment of adsorption processes and dispersion stability. Predicting ζ from molecular structure would be useful to the structure‐based molecular design of drugs, proteins, and other molecules that hold charge‐dependent function while remaining suspended in solution. One challenge in predicting ζ is identifying the location of the slip plane (XSP), a distance from the protein surface where ζ is theoretically defined. This study tests the hypothesis that theXSPcan be estimated by the Stokes–Einstein hydrodynamic radius (Rh), using globular hen egg white lysozyme as a model system. Although theXSPandRhdiffer in their theoretical definitions, with theXSPbeing the position of the ζ during electrokinetic phenomena (e.g., electrophoresis) and theRhbeing a radius pertaining to the edge of solvation during diffusion, they both represent the point where water and ions no longer adhere to a molecule. This work identifies the limited range of ionic strengths in which theXSPcan be determined using diffusivity measurements and the Stokes–Einstein equation. In addition, a computational protocol is developed for determining the ζ from a protein crystal structure. At low ionic strengths, a hyperdiffusivity regime exists, requiring direct measurement of electrophoretic mobility to determine ζ. This work, therefore, supports a basic tenant of EDL theory that the electric double layer during diffusion and electrophoresis are equivalent in the Stokes–Einstein regime.

     
    more » « less
  4. Abstract

    The distortion of the charge cloud around a uniformly charged, dielectric, rigid sphere that translates and rotates in an unbounded binary, symmetric electrolyte at zero Reynolds number is examined. The zeta potential of the particle ζ is assumed small relative to the thermal voltage scale. It is assumed that the equilibrium structure of the cloud is slightly distorted, which requires that the Péclet numbers characterizing distortion due to particle translation,, and rotation,, are small compared to unity. Here,ais radius of the particle;Dis the ionic diffusion coefficient;and, whereUandΩare the rectilinear and angular velocities of the particle, respectively. Perturbation expansions for smallandare employed to calculate the nonequilibrium structure of the cloud, whence the force and torque on the particle are determined. In particular, we predict that the sphere experiences a force orthogonal to its directions of translation and rotation. This “lift” force arises from the nonlinear distortion of the cloud under the combined actions of particle translation and rotation. The lift force is given by. Here, ε is the permittivity of the electrolyte;is the Debye length; andis a negative function that decreases in magnitude with increasing. The lift force implies that an unconstrained particle would follow a curved path; an electrokinetic analog of the inertial Magnus effect. Finally, the implication of the lift force on cross‐streamline migration of an electrophoretic particle in shear flow is discussed.

     
    more » « less
  5. We developed a method, by combining electrochemical and electrokinetic streaming current techniques to study ion distribution and ionic conductivity in the diffuse part of electrochemical double layer (EDL) of a metal-electrolyte interface, when potential is applied on the metal by a potentiostat. We applied this method to an electrochemically clean polycrystalline gold (poly Au)-electrolyte interface and measured zeta potential for various applied potentials, pH, and concentration of the electrolyte. Specific adsorption of chloride ions on poly Au was studied by comparing measurements of zeta potential in KCl and KClO4electrolytes. In absence of specific adsorption, zeta potential was found to increase linearly with applied potential, having slope of 0.04–0.06. When Cladsorption occurs, zeta potential changes the sign from positive to negative value at ∼750 mV vs Ag/AgCl applied potential. Complementary cyclic voltammetry and X-ray photoelectron spectroscopy studies were conducted to determine a degree of chloride ion adsorption on a poly Au. A correlation was observed between the applied potential at which zeta potential is zero and potential of zero charge for poly Au. Ion-distribution and ionic conductivity in the diffuse layer were calculated from the measured zeta potential data using nonlinear Poisson-Boltzmann distribution.

     
    more » « less