We study the time asymptotic decay of solutions for a general system of hyperbolic–parabolic balance laws in one space dimension. The system has a physical viscosity matrix and a lower-order term for relaxation, damping or chemical reaction. The viscosity matrix and the Jacobian matrix of the lower-order term are rank deficient. For Cauchy problem around a constant equilibrium state, existence of solution global in time has been established recently under a set of reasonable assumptions. In this paper, we obtain optimal [Formula: see text] decay rates for [Formula: see text]. Our result is general and applies to models such as Keller–Segel equations with logarithmic chemotactic sensitivity and logistic growth, and gas flows with translational and vibrational non-equilibrium. Our result also recovers or improves the existing results in literature on the special cases of hyperbolic–parabolic conservation laws and hyperbolic balance laws, respectively.
more »
« less
A Tutorial on Solution Properties of State Space Models of Dynamical Systems
The starting point of analysis of state space models is investigating existence, uniqueness and solution properties such as the semigroup property, and various formulas for the solutions. Several concepts such as the state transition matrix, the matrix exponential, the variations of constants formula (the Cauchy formula), the Peano-Baker series, and the Picard iteration are used to characterize solutions. In this note, a tutorial treatment is given where all of these concepts are shown to be various manifestations of a single abstract method, namely solving equations using an operator Neumann series involving the Volterra operator of forward integration. The matrix exponential, the Peano-Baker series, the Picard iteration, and the Cauchy formula can be "discovered" naturally from this Neumann series. The convergence of the series and iterations is a consequence of the key property of asymptotic nilpotence of the Volterra operator. This property is an asymptotic version of the nilpotence property of a strictly-lower-triangular matrix.
more »
« less
- PAR ID:
- 10322688
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The density matrix formalism is a fundamental tool in studying various problems in quantum information processing. In the space of density matrices, the most well-known measures are the Hilbert–Schmidt and Bures–Hall ensembles. In this work, the averages of quantum purity and von Neumann entropy for an ensemble that interpolates between these two major ensembles are explicitly calculated for finite-dimensional systems. The proposed interpolating ensemble is a specialization of the [Formula: see text]-deformed Cauchy–Laguerre two-matrix model and new results for this latter ensemble are given in full generality, including the recurrence relations satisfied by their associated bi-orthogonal polynomials when [Formula: see text] assumes positive integer values.more » « less
-
Abstract This paper develops an efficient and robust solution technique for the steady Boussinesq model of non-isothermal flow using Anderson acceleration applied to a Picard iteration. After analyzing the fixed point operator associated with the nonlinear iteration to prove that certain stability and regularity properties hold, we apply the authors’ recently constructed theory for Anderson acceleration, which yields a convergence result for the Anderson accelerated Picard iteration for the Boussinesq system. The result shows that the leading term in the residual is improved by the gain in the optimization problem, but at the cost of additional higher order terms that can be significant when the residual is large. We perform numerical tests that illustrate the theory, and show that a 2-stage choice of Anderson depth can be advantageous. We also consider Anderson acceleration applied to the Newton iteration for the Boussinesq equations, and observe that the acceleration allows the Newton iteration to converge for significantly higher Rayleigh numbers that it could without acceleration, even with a standard line search.more » « less
-
Abstract We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $$\operatorname {\mathrm {GL}}_{l}$$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.more » « less
-
Various of the single scale quantities in massless and massive QCD up to 3-loop order can be expressed by iterative integrals over certain classes of alphabets, from the harmonic polylogarithms to root-valued alphabets. Examples are the anomalous dimensions to 3-loop order, the massless Wilson coefficients and also different massive operator matrix elements. Starting at 3-loop order, however, also other letters appear in the case of massive operator matrix elements, the so called iterative non-iterative integrals, which are related to solutions based on complete elliptic integrals or any other special function with an integral representation that is definite but not a Volterra-type integral. After outlining the formalism leading to iterative non-iterative integrals,we present examples for both of these cases with the 3-loop anomalous dimension $$\gamma^{(2)}_{qg}$$ and the structure of the principle solution in the iterative non-interative case of the 3-loop QCD corrections to the $$\rho$$-parameter.more » « less