skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Shuffle Theorem for Paths Under Any Line
Abstract We generalize the shuffle theorem and its $(km,kn)$ version, as conjectured by Haglund et al. and Bergeron et al. and proven by Carlsson and Mellit, and Mellit, respectively. In our version the $(km,kn)$ Dyck paths on the combinatorial side are replaced by lattice paths lying under a line segment whose x and y intercepts need not be integers, and the algebraic side is given either by a Schiffmann algebra operator formula or an equivalent explicit raising operator formula. We derive our combinatorial identity as the polynomial truncation of an identity of infinite series of $$\operatorname {\mathrm {GL}}_{l}$$ characters, expressed in terms of infinite series versions of LLT polynomials. The series identity in question follows from a Cauchy identity for nonsymmetric Hall–Littlewood polynomials.  more » « less
Award ID(s):
2154281 1855804 1840234
PAR ID:
10410649
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Forum of Mathematics, Pi
Volume:
11
ISSN:
2050-5086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove and extend the longest-standing conjecture in ‘ q , t q,t -Catalan combinatorics,’ namely, the combinatorial formula for ∇<#comment/> m s μ<#comment/> \nabla ^m s_{\mu } conjectured by Loehr and Warrington, where s μ<#comment/> s_{\mu } is a Schur function and ∇<#comment/> \nabla is an eigenoperator on Macdonald polynomials. Our approach is to establish a stronger identity of infinite series of G L l GL_l characters involvingSchur Catalanimals; these were recently shown by the authors to represent Schur functions s μ<#comment/> [ −<#comment/> M X m , n ] s_{\mu }[-MX^{m,n}] in subalgebras Λ<#comment/> ( X m , n ) ⊂<#comment/> E \Lambda (X^{m,n})\subset \mathcal {E} isomorphic to the algebra of symmetric functions Λ<#comment/> \Lambda over Q ( q , t ) \mathbb {Q} (q,t) , where E \mathcal {E} is the elliptic Hall algebra of Burban and Schiffmann. We establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT polynomials, with terms indexed by configurations of nested lattice paths callednests, having endpoints and bounding constraints controlled by data called aden. The special case for Λ<#comment/> ( X m , 1 ) \Lambda (X^{m,1}) proves the Loehr-Warrington conjecture, giving ∇<#comment/> m s μ<#comment/> \nabla ^m s_{\mu } as a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general, for Λ<#comment/> ( X m , n ) \Lambda (X^{m,n}) our formula implies a new ( m , n ) (m,n) version of the Loehr-Warrington conjecture. In the case where each nest consists of a single lattice path, the nests in a den formula reduce to our previous shuffle theorem for paths under any line. Both this and the ( m , n ) (m,n) Loehr-Warrington formula generalize the ( k m , k n ) (km,kn) shuffle theorem proven by Carlsson and Mellit (for n = 1 n=1 ) and Mellit. Our formula here unifies these two generalizations. 
    more » « less
  2. We give a new operator formula for Grothendieck polynomials that generalizes Magyar’s Demazure operator formula for Schubert polynomials. Our proofs are purely combinatorial, contrasting with the geometric and representation theoretic tools used by Magyar. We apply our formula to prove a necessary divisibility condition for a monomial to appear in a given Grothendieck polynomial. 
    more » « less
  3. Ferroni and Larson gave a combinatorial interpretation of the braid Kazhdan-Lusztig polynomials in terms of series-parallel matroids. As a consequence, they confirmed an explicit formula for the leading Kazhdan-Lusztig coefficients of braid matroids with odd rank, as conjectured by Elias, Proudfoot, and Wakefield. Based on Ferroni and Larson’s work, we further explore the combinatorics behind the leading Kazhdan-Lusztig coefficients of braid matroids. The main results of this paper include an explicit formula for the leading Kazhdan-Lusztig coefficients of braid matroids with even rank, a simple expression for the number of simple series-parallel matroids of rank $k + 1$ on $2k$ elements, and explicit formulas for the leading coefficients of inverse Kazhdan-Lusztig polynomials of braid matroids. The binomial identity for the Abel polynomials plays an important role in the proofs of these formulas. 
    more » « less
  4. NA (Ed.)
    The quantum alcove model associated to a dominant weight plays an important role in many branches of mathematics, such as combinatorial representation theory, the theory of Macdonald polynomials, and Schubert calculus. For a dominant weight, it is proved by Lenart–Lubovsky that the quantum alcove model does not depend on the choice of a reduced alcove path, which is a shortest path of alcoves from the fundamental one to its translation by the given dominant weight. This is established through quantum Yang–Baxter moves, which biject the objects of the models associated to two such alcove paths, and can be viewed as a generalization of jeu de taquin slides to arbitrary root systems. The purpose of this paper is to give a generalization of quantum Yang–Baxter moves to the quantum alcove model corresponding to an arbitrary weight, which was used to express a general Chevalley formula for the equivariantK-group of semi-infinite flag manifolds. The generalized quantum Yang–Baxter moves give rise to a “sijection” (bijection between signed sets), and are shown to preserve certain important statistics, including weights and heights. As an application, we prove that the generating function of these statistics does not depend on the choice of a reduced alcove path. Also, we obtain an identity for the graded characters of Demazure submodules of level-zero extremal weight modules over a quantum affine algebra, which can be thought of as a representation-theoretic analogue of the mentioned Chevalley formula. 
    more » « less
  5. Abstract We prove the extended delta conjecture of Haglund, Remmel and Wilson, a combinatorial formula for $$\Delta _{h_l}\Delta ' _{e_k} e_{n}$$ , where $$\Delta ' _{e_k}$$ and $$\Delta _{h_l}$$ are Macdonald eigenoperators and $$e_n$$ is an elementary symmetric function. We actually prove a stronger identity of infinite series of $$\operatorname {\mathrm {GL}}_m$$ characters expressed in terms of LLT series. This is achieved through new results in the theory of the Schiffmann algebra and its action on the algebra of symmetric functions. 
    more » « less