skip to main content


Title: Fluid resonance in elastic-walled englacial transport networks
Abstract Englacial water transport is an integral part of the glacial hydrologic system, yet the geometry of englacial structures remains largely unknown. In this study, we explore the excitation of fluid resonance by small amplitude waves as a probe of englacial geometry. We model a hydraulic network consisting of one or more tabular cracks that intersect a cylindrical conduit, subject to oscillatory wave motion initiated at the water surface. Resulting resonant frequencies and quality factors are diagnostic of fluid properties and geometry of the englacial system. For a single crack–conduit system, the fundamental mode involves gravity-driven fluid sloshing between the conduit and the crack, at frequencies between 0.02 and 10 Hz for typical glacial parameters. Higher frequency modes include dispersive Krauklis waves generated within the crack and tube waves in the conduit. But we find that crack lengths are often well constrained by fundamental mode frequency and damping rate alone for settings that include alpine glaciers and ice sheets. Branching crack geometry and dip, ice thickness and source excitation function help define limits of crack detectability for this mode. In general, we suggest that identification of eigenmodes associated with wave motion in time series data may provide a pathway toward inferring englacial hydrologic structures.  more » « less
Award ID(s):
2036980
NSF-PAR ID:
10322704
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Glaciology
Volume:
67
Issue:
266
ISSN:
0022-1430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Very long period (VLP, 2–100 s) seismic signals at basaltic volcanoes like Kilauea, Hawai‘i, and Mount Erebus, Antarctica are likely from resonant oscillations of magma within the shallow plumbing system. The system consists of conduits connected to cracks (dikes and sills) or reservoirs of other shapes. A quantitative understanding of wave propagation and resonance in a coupled conduit‐crack system is required to interpret observations. In this work, we idealize the system as an axisymmetric conduit coupled to a tabular crack, accounting for fluid inertia, compressibility, and viscosity, buoyancy, and crack wall elasticity. We perform time domain simulations and eigenmode analyses of the governing equations, linearized about a rest state. The fundamental mode or conduit‐reservoir mode reflects the balance of conduit magma inertia with buoyancy (and, for small cracks, crack wall elasticity). Magma oscillates in an effectively incompressible manner within the conduit, deflating and inflating the crack, which couples to the surrounding solid to produce observable surface displacements. For sufficiently low viscosity magmas, viscous effects are confined to boundary layers. Shorter period modes are primarily reverberating crack waves with negligible coupling to the conduit. Finally, we introduce an approximate reduced model for the conduit‐reservoir mode, which can also handle more general reservoir geometries (e.g., spherical chambers). The reduced model connects the observable VLP period and quality factor to two uniquely constrained parameters: the inviscid oscillation periodT0and the viscous diffusion timeτvisacross the conduit radius. Our models can be extended to study the seismic response of more complex magmatic systems.

     
    more » « less
  2. Abstract Firn is the pervasive surface material across Antarctica, and its structures reflect its formation and history in response to environmental perturbations. In addition to the role of firn in thermally isolating underlying glacial ice, it defines near-surface elastic and density structure and strongly influences high-frequency (> 5 Hz) seismic phenomena observed near the surface. We investigate high-frequency seismic data collected with an array of seismographs deployed on the West Antarctic Ice Sheet (WAIS) near WAIS Divide camp in January 2019. Cross-correlations of anthropogenic noise originating from the approximately 5 km-distant camp were constructed using a 1 km-diameter circular array of 22 seismographs. We distinguish three Rayleigh (elastic surface) wave modes at frequencies up to 50 Hz that exhibit systematic spatially varying particle motion characteristics. The horizontal-to-vertical ratio for the second mode shows a spatial pattern of peak frequencies that matches particle motion transitions for both the fundamental and second Rayleigh modes. This pattern is further evident in the appearance of narrow band spectral peaks. We find that shallow lateral structural variations are consistent with these observations, and model spectral peaks as Rayleigh wave amplifications within similarly scaled shallow basin-like structures delineated by the strong velocity and density gradients typical of Antarctic firn. 
    more » « less
  3. Conduits generated by the buoyant dynamics between two miscible Stokes fluids with high viscosity contrast, a type of core–annular flow, exhibit a rich nonlinear wave dynamics. However, little is known about the fundamental wave dispersion properties of the medium. In the present work, a pump is used to inject a time-periodic flow that results in the excitation of propagating small- and large-amplitude periodic travelling waves along the conduit interface. This wavemaker problem is used as a means to measure the linear and nonlinear dispersion relations and corresponding periodic travelling wave profiles. Measurements are favourably compared with predictions from a fully nonlinear, long-wave model (the conduit equation) and the analytically computed linear dispersion relation for two-Stokes flow. A critical frequency is observed, marking the threshold between propagating and non-propagating (spatially decaying) waves. Measurements of wave profiles and the wavenumber–frequency dispersion relation quantitatively agree with wave solutions of the conduit equation. An upshift from the conduit equation's predicted critical frequency is observed and is explained by incorporating a weak recirculating flow into the full two-Stokes flow model. When the boundary condition corresponds to the temporal profile of a nonlinear periodic travelling wave solution of the conduit equation, weakly nonlinear and strongly nonlinear, cnoidal-type waves are observed that quantitatively agree with the conduit nonlinear dispersion relation and wave profiles. This wavemaker problem is an important precursor to the experimental investigation of more general boundary value problems in viscous fluid conduit nonlinear wave dynamics. 
    more » « less
  4. This work is centered on high-fidelity modeling, analysis, and rigorous experiments of vibrations and guided (Lamb) waves in a human skull in two connected tracks: (1) layered modeling of the cranial bone structure (with cortical tables and diploë) and its vibration-based elastic parameter identification (and validation); (2) transcranial leaky Lamb wave characterization experiments and radiation analyses using the identified elastic parameters in a layered semi analytical finite element framework, followed by time transient simulations that consider the inner porosity as is. In the first track, non-contact vibration experiments are conducted to extract the first handful of modal frequencies in the auditory frequency regime, along with the associated damping ratios and mode shapes, of dry cranial bone segments extracted from the parietal and frontal regions of a human skull. Numerical models of the bone segments are built with a novel image reconstruction scheme that employs microcomputed tomographic scans to build a layered bone geometry with separate homogenized domains for the cortical tables and the diploë. These numerical models and the experimental modal frequencies are then used in an iterative parameter identification scheme that yields the cortical and diploic isotropic elastic moduli of each domain, whereas the corresponding densities are estimated using the total experimental mass and layer mass ratios obtained from the scans. With the identified elastic parameters, the average error between experimental and numerical modal frequencies is less than 1.5% and the modal assurance criterion values for most modes are above 0.90. Furthermore, the extracted parameters are in the range of the results reported in the literature. In the second track, the focus is placed on the subject of leaky Lamb waves, which has received growing attention as a promising alternative to conventional ultrasound techniques for transcranial transmission, especially to access the brain periphery. Experiments are conducted on the same cranial bone segment set for leaky Lamb wave excitation and radiation characterization. The degassed skull bone segments are used in submersed experiments with an ultrasonic transducer and needle hydrophone setup for radiation pressure field scanning. Elastic parameters obtained from the first track are used in guided wave dispersion simulations, and the radiation angles are accurately predicted using the aforementioned layered model in the presence of fluid loading. The dominant radiation angles are shown to correspond to guided wave modes with low attenuation and a significant out-of-plane polarization. The experimental radiation spectra are finally compared against those obtained from time transient finite element simulations that leverage geometric models reconstructed from microcomputed tomographic scans. 
    more » « less
  5. Steady-state traveling waves in structures have been previously investigated for a variety of purposes including propulsion of objects and agitation of a surrounding medium. In the field of additive manufacturing, powder bed fusion (PBF) is a commonly used process that uses heat to fuse regions of metallic or polymer powders within a loose bed. PBF processes require post-process removal of loose powder, which can be difficult when blind holes or complex internal geometry are present in the fabricated part. Here, a preliminary investigation of a simple part is conducted examining the use of traveling waves for post-process de-powdering of additively manufactured specimens. The generation of steady-state traveling waves in a structure is accomplished through excitation at a frequency between two adjacent resonant frequencies of the structure, resulting in two-mode excitation. This excitation can be generated by bonded piezoceramic elements actuated by a sinusoidal voltage signal. The response of the structure is affected by the parameters of the excitation, such as the particular frequency of the voltage signal, the placement of the piezoceramic actuators, and the phase difference in the signals applied to different actuators. Careful selection of these parameters allows adjustment of the quality, wavelength, and wave speed of the resulting traveling waves. In this work, open-top rectangular box specimens composed of sintered nylon powder and coated with fine sand are used to represent freshly fabricated parts yet-to-be cleaned of un-sintered powder. Steady-state traveling waves are excited in the specimens while variations in the frequency content and phase differences between actuation points of the excitation are used to affect the characteristics of the dynamic response. The effectiveness of several response types for the purpose of moving un-sintered nylon powder within the specimens is investigated. 
    more » « less