The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity.
more »
« less
Lichens and microbial syntrophies offer models for an interdependent route to multicellularity
Abstract The evolution of multicellularity paved the way for significant increases in biological complexity. Although multicellularity has evolved many times independently, we know relatively little about its origins. Directed evolution is a promising approach to studying early steps in this major transition, but current experimental systems have examined only a subset of the possible evolutionary routes to multicellularity. Here we consider egalitarian routes to multicellularity, in which unrelated unicellular organisms evolve to become a multicellular organism. Inspired by microbial syntrophies and lichens, we outline three such routes from a system of different species to an interdependent relationship that replicates. We compare these routes to contemporary experimental systems and consider how physical structure, the threat of invasion, division of labour and co-transmission affect their evolution.
more »
« less
- PAR ID:
- 10322814
- Date Published:
- Journal Name:
- The Lichenologist
- Volume:
- 53
- Issue:
- 4
- ISSN:
- 0024-2829
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The evolution of multicellularity was a major transition in evolution and set the stage for unprecedented increases in complexity, especially in land plants and animals. Here, we explore the genetics underlying a de novo origin of multicellularity in a microbial evolution experiment carried out on the green alga Chlamydomonas reinhardtii . We show that large-scale changes in gene expression underlie the transition to a multicellular life cycle. Among these, changes to genes involved in cell cycle and reproductive processes were overrepresented, as were changes to C. reinhardtii -specific and volvocine-specific genes. These results suggest that the genetic basis for the experimental evolution of multicellularity in C. reinhardtii has both lineage-specific and shared features, and that the shared features have more in common with C. reinhardtii 's relatives among the volvocine algae than with other multicellular green algae or land plants.more » « less
-
Abstract The transition from unicellular to multicellular life was one of a few major events in the history of life that created new opportunities for more complex biological systems to evolve. Predation is hypothesized as one selective pressure that may have driven the evolution of multicellularity. Here we show thatde novoorigins of simple multicellularity can evolve in response to predation. We subjected outcrossed populations of the unicellular green algaChlamydomonas reinhardtiito selection by the filter-feeding predatorParamecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in unselected control populations within ~750 asexual generations. Considerable variation exists in the evolved multicellular life cycles, with both cell number and propagule size varying among isolates. Survival assays show that evolved multicellular traits provide effective protection against predation. These results support the hypothesis that selection imposed by predators may have played a role in some origins of multicellularity.more » « less
-
Abstract Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi—the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.more » « less
-
The evolution of multicellularity is a major evolutionary transition that underlies the radiation of many species in all domains of life, especially in eukaryotes. The volvocine green algae are an unconventional model system that holds great promise in the field given its genetic tractability, late transition to multicellularity, and phenotypic diversity. Multiple efforts at linking multicellularity-related developmental landmarks to key molecular changes, especially at the genome level, have provided key insights into the molecular innovations or lack thereof that underlie multicellularity. Twelve developmental changes have been proposed to explain the evolution of complex differentiated multicellularity in the volvocine algae. Co-option of key genes, such as cell cycle and developmental regulators has been observed, but with few exceptions, known co-option events do not seem to coincide with most developmental features observed in multicellular volvocines. The apparent lack of “master multicellularity genes” combined with no apparent correlation between gene gains for developmental processes suggest the possibility that many multicellular traits might be the product gene-regulatory and functional innovations; in other words, multicellularity can arise from shared genomic repertoires that undergo regulatory and functional overhauls.more » « less
An official website of the United States government

